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Abstract

In this article, superpositions of possibly dependent point processes on a general
space X are considered. Using Stein’s method for Poisson process approximation, an
estimate is given for the Wasserstein distance d2 between the distribution of such a
superposition and an appropriate Poisson process distribution. This estimate is com-
pared to a modern version of Grigelionis’ theorem, and to results of Banys (1980),
Arratia, Goldstein, and Gordon (1989), and Barbour, Holst, and Janson (1992).
Furthermore, an application to a spatial birth-death model is presented.
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1 Introduction

Superposition is the historical term for sum when the summands are point processes.
It is a standard result that the superposition of independent and uniformly sparse
processes converges in distribution to a Poisson process as the number of processes
and the sparseness increase; a fact which forms for example the theoretical backing
for many Poisson models of random occurences in time.

∗ Tel.: +41-44-6355852; fax: +41-44-6355706.
Email address: dominic.schuhmacher@math.unizh.ch (Dominic Schuhmacher).
URL: www.math.unizh.ch/∼schumi/ (Dominic Schuhmacher).

1 Work supported in part by Schweizerischer Nationalfonds, Project Nos. 20-61753.00 and
20-67909.02, and by the Institute for Mathematical Sciences of the National University of
Singapore.

Preprint submitted to Elsevier Science 21 February 2005



Convergence results of this type were first examined in the context of mass service in
telecommunications, with Palm (1943) and Khinchin (1955) being the first sources
of formal proofs for Poisson limit theorems, albeit under quite strong assumptions.
A general Poisson limit theorem for independent superpositions was then obtained
in Grigelionis (1963) for the state space R+, versions for more universal state spaces
in Goldman (1967) and Jagers (1972). We formulate Kallenberg’s version of Grige-
lionis’ theorem below. A discussion of results with general infinitely divisible point
processes in the limit can be found in Matthes, Kerstan, and Mecke (1978). Note in
particular Theorem 3.4.2, which contains Grigelionis’ theorem as a special case. All
the sources mentioned so far restrict themselves to superpositions of independent
point processes. Corresponding results for dependent (mixing) point processes with
Poisson and compound Poisson processes in the limit can be found in Banys (1980).
A first weak distance estimate for the finite dimensional distributions of an indepen-
dent superposition on the real line was obtained in Theorem 2 of Grigelionis (1963).
A much stronger result in total variation distance for superpositions of processes
with dependent numbers but independent positions of points is an immediate con-
sequence of Theorem 10.H in Barbour, Holst, and Janson (1992). Many rather spe-
cialized contributions have to go unmentioned here. For a listing of authors of the
more general results left out above the reader is referred to the historical remarks
for Chapter 6 and 7 in Kallenberg (1986) and the introduction of Serfozo (1984)
(note the article itself).

In the present study, we focus on Poisson process approximation of dependent su-
perpositions, which is the same setting as in Banys (1980), Section 2. We give an
explicit upper bound for a Wasserstein-type of distance (denoted by d2 and called
the Barbour-Brown distance) between the law of such a superposition and a Poisson
process law. d2 has proved to be a useful metric between point process distributions
in many instances. See the references at the end of this section, given after the
definition and some elementary results.

Our proof is based on Stein’s method for Poisson process approximation as presented
in Barbour (1988). A short account of this method can be found in the appendix.
Stein’s method in general is known especially for making no fundamental distinction
between independent random elements and different degrees of weakly dependent
random elements, which makes it possible to analyze the situation of moderately de-
pendent point processes (where the dependence is controlled by a mixing condition)
without too much difficulty.

After the removal of all but at most one point from each of the superimposed point
processes, Stein’s method is applied directly in our proof. Another strategy would
be to align the point processes in a bigger state space, assembling a marked process
of the form

∑
i∈N δi⊗ ξi instead of the superposition

∑
i∈N ξi, so that the dependence

between the point processes ξi is expressed as spatial dependence. There are various
theorems then that can be used for such a situation, like Theorem 3.6 in Barbour and
Brown (1992), Theorem 2.3 in Chen and Xia (2004), or, in special cases, Theorem 2.A
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in Schuhmacher (2005a). It can easily be seen that the bounds obtained by these
theorems for the approximation of the marked process are then also valid for the
corresponding superposition approximation. The results derived in such a manner
have similar flavor as the estimate presented in this paper, but are still quite different
in certain aspects, especially in the way the dependence between the point processes
enters the upper bound.

A detailed comparison with other related results is given in Remark 2.4. Our esti-
mate typically performs well compared to these results. It is much more generally
applicable than the distance estimates previously obtained (usually in the stronger
total variation distance), and it yields bounds that imply convergence under condi-
tions very similar to those of previous limit theorems.

In Section 3, we give an application of our upper bound in the context of a spatial
birth-death model. We examine the development of an animal population modeled
by assigning a birth-death process to each of the individuals. These processes may
depend on each other according to the spatial arrangement of the animals. We
show that the events occurring in the population over a short period of time are
approximately composed of two independent Poisson processes, one for the births
and one for the deaths, and give explicit bounds for the approximation.

In the remainder of this introduction we give the necessary definitions and notation
along with some basic results. For the whole article let X be a locally compact,
second countable Hausdorff space (lcscH space). Denote by B the Borel σ-algebra
on X , and by Bλ for any measure λ on X the algebra {B ∈ B; λ(∂B) = 0}. Write
furthermore M and N for the space of boundedly finite measures on X (i.e. mea-
sures which take finite values at every relatively compact set) and the subspace
of boundedly finite point measures on X , respectively, and denote the usual σ-
algebras on these spaces by M resp. N (see Kallenberg (1986), Section 1.1 for the
corresponding definitions). A point process is then defined as a random element of
(N , N). Convergence in distribution of point processes is defined with respect to the
vague topology on N (see Kallenberg (1986), Section 15.7) and written in the form

ξn
D−→ ξ for n → ∞, where ξ, ξ1, ξ2, . . . are point processes. The next definition is

used to formulate Grigelionis’ theorem.

Definition 1.1 For every n, i ∈ N let ξni be a point process on X . The collection
(ξni)n,i is called a null array if

(a) (ξni)i∈N is an independent sequence of point processes for every n ∈ N;
(b) supi∈N P[ξni(B) ≥ 1] −→ 0 as n →∞ for every bounded B ∈ B.

We now state Grigelionis’ theorem in the version of Kallenberg (2002), Theo-
rem 16.18, in order to have some basic possibility of comparison for our result in
Section 2.
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Theorem 1.2 (Grigelionis) Let (ξni)n,i∈N be a null array of point processes on X .
Furthermore let λ be a boundedly finite measure on X and denote by η the Poisson

process on X with parameter measure λ. Then
∑∞

i=1 ξni
D−→ η for n → ∞ iff the

following conditions hold:

(i)
∑

i P[ξni(B) ≥ 1] −→ λ(B) (n →∞) for every bounded B ∈ Bλ;
(ii)

∑
i P[ξni(B) ≥ 2] −→ 0 (n →∞) for every bounded B ∈ B.

Finally, we give a brief description of the distance d2 we are going to use, along with
some basic results. We call this distance the Barbour-Brown distance, according to
its introduction in Barbour and Brown (1992). It can be constructed essentially as
two Wasserstein metrics, one on top of the other. Suppose X is now compact, and
d0 is a metric on X that generates the topology on X and is bounded by one. It is
always possible to find such a metric since any lcscH is Polish and trimming of the
metric has no influence on the generated topology. We denote for any point measure
% ∈ N by |%| := %(X ) < ∞ its total number of points.

Definition 1.3 (a) The d1-distance (w.r.t. d0) between point measures %1, %2 ∈ N
is defined by

d1(%1, %2) :=


1 if |%1| 6= |%2|

1
|%1| supg∈F1

∣∣∣∫ g d%1 −
∫

g d%2

∣∣∣ if |%1| = |%2| ≥ 1

0 if |%1| = |%2| = 0

,

where F1 := {g : X → R ; |g(x1)− g(x2)| ≤ d0(x1, x2)}.
(b) The Barbour-Brown distance d2 (w.r.t. d0) between probability measures P and

Q on N is defined by

d2(P, Q) := sup
f∈F2

∣∣∣∣∫ f dP −
∫

f dQ
∣∣∣∣ ,

where F2 := {f : N → R; |f(%1)− f(%2)| ≤ d1(%1, %2)}.

The following proposition summarizes some results in connection with the Barbour-
Brown distance.

Proposition 1.4 (i) For point measures %1, %2 on X with %1 =
∑v

i=1 δs1,i
, %2 =∑v

i=1 δs2,i
, v ≥ 1, we have that

d1(%1, %2) = min
π∈Σv

1
v

∑v
i=1d0(s1,i, s2,π(i)),

where Σv denotes the set of permutations on {1, 2, . . . , v}.
(ii) For probability measures P , Q on N we have that

d2(P, Q) = min
ξ1∼P
ξ2∼Q

E d1(ξ1, ξ2).
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(iii) The Barbour-Brown distance metrizes the weak convergence of point process

distributions, that is for point processes ξ, ξ1, ξ2, . . . on X we have that ξn
D−→ ξ

iff d2

(
L(ξn),L(ξ)

)
−→ 0.

For a more detailed account of the distance including proofs of the above results,
the reader is referred to Barbour, Holst, and Janson (1992), Section 10.2, and to
Schuhmacher (2005a), Sections 1 and 3. Further details and recent applications of
d2 include the results of Brown, Weinberg, and Xia (2000), Barbour, Novak, and
Xia (2002), Barbour and Månsson (2002), and Chen and Xia (2004).

2 The distance estimates

We state in this section the main theorem, which gives an upper bound for the
distance between the distribution of a superposition and a corresponding Poisson
process distribution. Note that this is a static result, so there is no need to have
n in our notation, nor is there anything else going to infinity. To demonstrate the
usefulness of our result we compare the upper bound to the convergence conditions
in Grigelionis’ theorem and in Theorem 4 in Banys (1980), as well as to the related
results of Theorem 2 in Arratia, Goldstein, and Gordon (1989), and Theorem 10.H
in Barbour, Holst, and Janson (1992).

Let (ξi)i∈N be a sequence of point processes on the compact metric space (X , d0)

which satisfies 0 <
∑∞

i=1 P[|ξi| ≥ 1] < ∞. For each i ∈ N, partition N as
{
{i}, Γs

i, Γ
w
i

}
,

where the idea is that ξj depends “strongly” on ξi for j ∈ Γs
i, and ξj depends “weakly”

on ξi for j ∈ Γw
i . There is, however, no formal requirement for these partitions: if

N \ {i} is split up “unnaturally” for a large part of the i, the bound below is still
true, but can be very bad.

Choose for each point process ξi a representation as ξi =
∑|ξi|

k=1 δ
S

(k)
i

, where |ξi| :=

ξi(X ) and S
(k)
i are σ(ξi)-measurable random variables for k ∈ N. That such rep-

resentations exist is a direct consequence of Lemma 2.3 in Kallenberg (1986). Set

furthermore Si := S
(1)
i . For any finite measure λ on X denote by Po(λ) the distri-

bution of the Poisson process with parameter measure λ.

We have the following main result.
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Theorem 2.1 Let pi := P[|ξi| ≥ 1], p′i := P[|ξi| ≥ 2] and define the measure µ on
X by µ(B) :=

∑∞
i=1 P[|ξi| ≥ 1, Si ∈ B] for every B ∈ B. Then

d2

(
L

( ∞∑
i=1

ξi

)
, Po(µ)

)

≤
∞∑
i=1

p′i + M2

∞∑
i=1

p2
i + M2

∞∑
i=1

∑
j∈Γs

i

(
pipj + P

[
|ξi| ≥ 1, |ξj| ≥ 1

])

+ (M1 + M2)
∞∑
i=1

E
∣∣∣∣P[
|ξi| ≥ 1

∣∣∣ (ξj)j∈Γw
i

]
− pi

∣∣∣∣
+ M2

∞∑
i=1

pi E dW

(
L

(
Si

∣∣∣ |ξi| ≥ 1
)
,L

(
Si

∣∣∣ |ξi| ≥ 1, (ξj)j∈Γw
i

))
,

where M1, M2 are given by Formulae (A.5) and (A.6) in the appendix, and dW

denotes the Wasserstein distance on X with respect to d0 (see e.g. Barbour, Holst,
and Janson (1992), Appendix A.1 for the definition and some elementary results).

Remark 2.2 (Poisson process with slightly different parameter measure)

We obtain a similar result for d2

(
L(

∑∞
i=1 ξi), Po(µ̃)

)
with µ̃(B) =

∑∞
i=1 P[|ξi| =

1, ξi(B) = 1] for every B ∈ B. Just replace in the above theorem “|ξi| ≥ 1” with
“|ξi| = 1” every time it occurs. The advantage of this alternative result is that no
explicit representations of the ξi are needed for its formulation.

Corollary 2.3 Let (ξni)n,i be a null array of point processes, and λ a measure on X
with |λ| := λ(X ) < ∞. In the notation of Theorem 2.1, with pi, p′i and µ depending
now on n, we have

d2

(
L

( ∞∑
i=1

ξni

)
, Po(λ)

)

≤
∞∑
i=1

p′i + M2

∞∑
i=1

p2
i + min

(
1, 1.65√

|µ|
, 1.65√

|λ|

)∣∣∣|µ| − |λ|∣∣∣ +
(
1− emin(|µ|,|λ|)

)
dW

(
µ
|µ| ,

λ
|λ|

)
,

which under the Conditions (i) and (ii) of Grigelionis’ theorem goes to zero as
n →∞.

Remark 2.4 (Comparisons with other results)

(a) The sufficiency of Conditions (i) and (ii) in Grigelionis’ theorem 1.2 is by Propo-
sition 1.4(iii) an immediate consequence of Corollary 2.3.

(b) Theorem 4 of Banys (1980), which like Grigelionis’ theorem is a mere conver-
gence result, is not implied directly by Theorem 2.1, but the two theorems have
very similar flavor. Banys uses in indirect form also the concepts of an index set
Γs

i of strong dependence and an index set Γw
i of weak dependence, his assump-

tions of them being weaker in so far as for every index i only {1, 2, . . . , i − 1}
has to be partitioned, but stronger in so far as there is less freedom in the
choice of these partitions. Apart from this difference however, the summands
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in our upper bound correspond directly to the terms that have to go to zero in
Banys’ theorem in order to ensure convergence of the superposition. They are
even exactly the same, except for the last two summands, which capture the
weak long range dependence: in Banys’ theorem this dependence is controlled
by the smallness of terms of the form (in our notation)

∞∑
i=1

E
∣∣∣P[ξi(B) ≥ 1 | (ξj)j∈Γw

i
]− P[ξi(B) ≥ 1]

∣∣∣
for every B ∈ B.

(c) The setting of Theorem 10.H from Barbour, Holst, and Janson (1992) is a spe-
cial case of the setting of Theorem 2.1 from this paper except for the stronger
total variation distance that was used there. To cope with this distance, strong
assumptions about the independence of the point positions were made in Theo-
rem 10.H, which we do not need for our Theorem 2.1 (note that the motivation
for Theorem 10.H was a very different one). The basic ideas of the proofs are in
both theorems the same. Under the more restrictive setting of Theorem 10.H,
the upper bounds obtained for the two distances are also the same, up to some
rather slight differences in the factors M1 and M2.

(d) In Arratia, Goldstein, and Gordon (1989), Theorem 2, an upper bound is given
for the total variation distance between a dependent Bernoulli process (Xαi

)i∈N
and a Poisson process (Yαi

)i∈N on an arbitrary set {αi; i ∈ N}. There are two
ways in which this situation can be related to the setting of Theorem 2.1. The
more obvious way is by contrasting the sequence (Xαi

)i∈N with the sequence
(ξi)i∈N. Thus, where Arratia, Goldstein, and Gordon use dependent indicator
random variables, we use point processes with exactly the same local depen-
dence structure. Where they examine the common distribution of the indicators
(and also their sum) in the total variation distance, we examine the sum of our
point processes in the Barbour-Brown distance. The other way to relate the
two situations, is by setting ξi := Xαi

δαi
. Thus, we obtain the Bernoulli pro-

cess (Xαi
)i∈N as a very special case of our superposition

∑
i ξi (there is at most

one point per point process, and its position is deterministic). Since we use
the weaker Barbour-Brown distance the results are not comparable. However,
a comparison with a corresponding d2 upper bound for the Bernoulli situa-
tion, such as the one in Theorem 10.F of Barbour, Holst, and Janson (1992)
(ignoring the last summand in their upper bound, which just stems from an
additional comparison between two Poisson processes), yields that our upper
bound is qualitatively exactly the same, and differs in absolute terms only by
having the factor (M1+M2) instead of only M1 in front of the fourth summand.
So, up to this changed factor, the bound in Theorem 10.F can be obtained as
a special case of our Theorem 2.1. Our result is strictly more general, among
other things in that the neighborhoods of strong dependence Γs

i are not bound
to fixed regions of the state space.
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Proof of Theorem 2.1

Our strategy is to reduce the point processes ξi to their first points, and then apply
Stein’s method to the superposition of these reduced point processes. Let η be a
Poisson point process with parameter measure µ, and split up the initial distance as

d2

(
L(

∑
iξi),L(η)

)
≤ d2

(
L(

∑
iξi),L(

∑
iIiδSi

)
)

+ d2

(
L(

∑
iIiδSi

),L(η)
)
,

where Ii := 1{|ξi|≥1} for every i ∈ N.

The reduction term is very easily estimated, using the “natural coupling” of the two
processes. By Proposition 1.4(ii) we have

d2

(
L(

∑
iξi),L(

∑
iIiδSi

)
)

≤ E d1(
∑

iξi,
∑

iIiδSi
)

= P
[
|∑iξi| 6= |∑iIiδSi

|
]
+ E

(
d1(

∑
iξi,

∑
iIiδSi

) 1{|∑iξi| = |∑iIiδSi
|}

)
= P

[⋃
i{|ξi| ≥ 2}

]
≤

∑
i

p′i, (2.1)

where the expectation in the third line is zero, because IiδSi
≤ ξi for every i ∈ N.

For the distance between the distributions of the reduced superposition and the
Poisson process we apply Stein’s method for Poisson process approximation (Bar-
bour (1988)). A short sketch of this method can be found in the appendix. Set
Ξ :=

∑∞
i=1 IiδSi

, and Ξi :=
∑

j∈N\{i} IjδSj
and Ξw

i :=
∑

j∈Γw
i

IjδSj
for every i ∈ N.

Choose random elements S̃1, S̃2, . . . in X that are independent among each other
and of anything else, such that S̃i ∼ L(Si | Ii = 1). Fix f ∈ F2 and let h = hf be
the solution to the Stein equation (A.4) given by (A.3). Then we have that∣∣∣Ef(Ξ)− Ef(η)

∣∣∣
=

∣∣∣∣E ∫
X

[
h(Ξ− δs)− h(Ξ)

]
Ξ(ds) + E

∫
X

[
h(Ξ + δs)− h(Ξ)

]
µ(ds)

∣∣∣∣
=

∣∣∣∣E( ∞∑
i=1

Ii

[
h(Ξ− δSi

)− h(Ξ)
])

+ E
( ∞∑

i=1

pi E
(
h(Ξ + δ

S̃i
)− h(Ξ)

∣∣∣ Ξ
))∣∣∣∣

≤
∞∑
i=1

∣∣∣∣E(
Ii

[
h(Ξ− δSi

)− h(Ξ)
])

+ E
(
pi

[
h(Ξ + δ

S̃i
)− h(Ξ)

])∣∣∣∣,
where we used that

∫
g(x) µ(dx) =

∑∞
i=1

∫
g(x) µi(dx) for µ1, µ2, . . . and µ =

∑∞
i=1 µi

finite measures on X and g ∈ L1(µ) in the third line, and Fubini’s Theorem in the
last line (both based on

∑
i P[|ξi| ≥ 1] < ∞ and ∆1h ≤ 1). The i-th summand can
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then be split up further as∣∣∣∣E(
Ii

[
h(Ξ− δSi

)− h(Ξ)
])
− E

(
pi

[
h(Ξ)− h(Ξ + δ

S̃i
)
])∣∣∣∣

≤
∣∣∣∣E(

Ii

[
h(Ξ− δSi

)− h(Ξ)
])
− E

(
Ii

[
h(Ξw

i )− h(Ξw
i + δSi

)
])∣∣∣∣

+
∣∣∣∣E(

Ii

[
h(Ξw

i )− h(Ξw
i + δSi

)
])
− E

(
Ii

[
h(Ξw

i )− h(Ξw
i + δ

S̃i
)
])∣∣∣∣

+
∣∣∣∣E(

Ii

[
h(Ξw

i )− h(Ξw
i + δ

S̃i
)
])
− E

(
pi

[
h(Ξw

i )− h(Ξw
i + δ

S̃i
)
])∣∣∣∣

+
∣∣∣∣E(

pi

[
h(Ξw

i )− h(Ξw
i + δ

S̃i
)
])
− E

(
pi

[
h(Ξ)− h(Ξ + δ

S̃i
)
])∣∣∣∣. (2.2)

The first summand in Inequality (2.2)

Assume without loss of generality that Γs
i is an infinite set, for if it is not, we can

add infinitely many 0-processes to the superposition and put all their indices into Γs
i.

Enumerate the elements in Γs
i by r(1), r(2), . . . and write Ξw,l

i := Ξw
i +

∑l
j=1 Ir(j)δSr(j)

for l ≥ 0. Since by Borel-Cantelli
∑∞

j=1 Ir(j) is almost surely finite, the first summand
can be expanded into a telescopic sum, and is hence equal to∣∣∣∣E(

Ii

∞∑
l=1

([
h(Ξw,l

i )− h(Ξw,l
i + δSi

)
]
−

[
h(Ξw,l−1

i )− h(Ξw,l−1
i + δSi

)
]))∣∣∣∣

≤
∞∑
l=1

∣∣∣∣E(
Ii

[
h(Ξw,l

i )− h(Ξw,l
i + δSi

)− h(Ξw,l−1
i ) + h(Ξw,l−1

i + δSi
)
])∣∣∣∣.

The moduli can be further bounded by

E
(
IiIr(l)

∣∣∣h(Ξw,l−1
i + δSr(l)

+ δSi
)− h(Ξw,l−1

i + δSr(l)
)− h(Ξw,l−1

i + δSi
) + h(Ξw,l−1

i )
∣∣∣),

such that by Inequality (A.6) the total bound for the first summand in Inequal-
ity (2.2) is

M2

∞∑
l=1

E(IiIr(l)) = M2

∑
j∈Γs

i

E(IiIj).

The second summand in Inequality (2.2)

We first show that for any % ∈ N the function g% : X → R given by

g%(s) := h(% + δs) for all s ∈ X

is d0-Lipschitz continuous with constant C := 1 ∧ 1
|µ|

(
log+(|µ|) + 1

)
. This is done

in a similar way as the bounds (A.5) and (A.6) are obtained. Write the spatial
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immigration-death processes Z and Z ′ with (deterministic) initial configurations
%+δs and %+δs′ as Z1+δs1{E>t} and Z1+δs′1{E>t}, respectively, where E is a standard
exponentially distributed random variable that is independent of everything else,
and Z1 is the immigration-death process with immigration measure µ and unit
per-capita death rate that starts with configuration %. We furthermore write Z0

for the same immigration-death process that starts with zero points. Note that
Z0(t) ∼ Po((1− e−t)µ), and write µt := (1− e−t)|µ|. Then, using the explicit form
of h given by Equation (A.3), we have that

∣∣∣g%(s)− g%(s
′)

∣∣∣ =
∣∣∣∣∫ ∞

0

[
Ef(Z(t))− Ef(Z ′(t))

]
dt

∣∣∣∣
=

∣∣∣∣∫ ∞

0

[
Ef(Z1(t) + δs)− Ef(Z1(t) + δs′)

]
P[E > t] dt

∣∣∣∣
≤

∫ ∞

0
E d1

(
Z1(t) + δs, Z1(t) + δs′

)
e−t dt

= d0(s, s
′)

∫ ∞

0
E(|Z1(t)|+ 1)−1e−t dt (2.3)

by Proposition 1.4(i), where furthermore

E
(

1

|Z1(t)|+ 1

)
≤ E

(
1

|Z0(t)|+ 1

)
=

1− e−µt

µt

.

Hence it follows that the integral at the end of Inequality (2.3) is bounded by C,
which yields the required Lipschitz continuity.

The second term in Inequality (2.2) is now estimated for pi > 0 as∣∣∣∣E(
Ii

[
h(Ξw

i )− h(Ξw
i + δSi

)
])
− E

(
Ii

[
h(Ξw

i )− h(Ξw
i + δ

S̃i
)
])∣∣∣∣

=
∣∣∣∣E(

Ii

[
gΞw

i
(S̃i)− gΞw

i
(Si)

])∣∣∣∣
=

∣∣∣∣E(
Ii E

(
gΞw

i
(S̃i)− gΞw

i
(Si)

∣∣∣ Ii = 1, Ξw
i

))∣∣∣∣
≤ C E

(
Ii dW

(
L(Si | Ii = 1),L(Si | Ii = 1, Ξw

i )
))

≤ C pi E dW

(
L(Si | Ii = 1),L(Si | Ii = 1, Ξw

i )
)

+ C E
∣∣∣E(Ii |Ξw

i )− pi

∣∣∣,
where for the third line we used that Ii F (Ii, X) = Ii F (1, X) for any random variable
X and any function F . Note that the dW -term is a measurable function in Ξw

i ,
because the supremum in its definition can be substituted by the supremum over a
countable set of functions. The overall bound above is trivially true for pi = 0 as
well.
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The third summand in Inequality (2.2)

Since S̃i is independent of (Ii, Ξ
w
i ) and hence S̃i ⊥⊥Ξw

i
Ii (i.e. S̃i is independent of Ii

given Ξw
i ), we obtain for the third summand∣∣∣∣E(

Ii

[
h(Ξw

i )− h(Ξw
i + δ

S̃i
)
])
− E

(
pi

[
h(Ξw

i )− h(Ξw
i + δ

S̃i
)
])∣∣∣∣

=
∣∣∣∣E(

E
(
(Ii − pi)

[
h(Ξw

i )− h(Ξw
i + δ

S̃i
)
] ∣∣∣ Ξw

i

))∣∣∣∣
=

∣∣∣∣E(
E(Ii − pi |Ξw

i ) E
(
h(Ξw

i )− h(Ξw
i + δ

S̃i
)

∣∣∣ Ξw
i

))∣∣∣∣
≤ M1 E

∣∣∣E(Ii |Ξw
i )− pi

∣∣∣
by Inequality (A.5).

The fourth summand in Inequality (2.2)

We proceed in the same way as for the first summand and use the corresponding
notation. Thus the fourth summand can be expanded into a telescopic sum and
hence estimated by

pi

∞∑
l=1

∣∣∣∣E([
h(Ξw,l

i )− h(Ξw,l
i + δ

S̃i
)
]
−

[
h(Ξw,l−1

i )− h(Ξw,l−1
i + δ

S̃i
)
])∣∣∣∣

+ pi

∣∣∣∣E([
h(Ξ)− h(Ξ + δ

S̃i
)
]
−

[
h(Ξi)− h(Ξi + δ

S̃i
)
])∣∣∣∣.

We bound the moduli in the analogous way as for the first summand and have thus

M2

( ∑
j∈Γs

i

pipj + p2
i

)

as the total bound for the fourth summand.

Assembling of the four estimates for the summands in Inequality (2.2) yields

d2

(
L(

∑
iIiδSi

),L(η)
)

= sup
f∈F2

∣∣∣Ef(Ξ)− Ef(η)
∣∣∣

≤ M2

∞∑
i=1

p2
i + M2

∞∑
i=1

∑
j∈Γs

i

(
pipj + E(IiIj)

)
+ (M1 + C)

∞∑
i=1

E
∣∣∣E(Ii |Ξw

i )− pi

∣∣∣
+ C

∞∑
i=1

pi E dW

(
L(Si | Ii = 1),L(Si | Ii = 1, Ξw

i )
)
.
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Together with Inequality (2.1), and noting that C ≤ M2 and that Ξw
i is a measurable

function of (ξj)j∈Γw
i
, we obtain the required result. 2

Proof of Corollary 2.3

Choose Γs
i := ∅ and Γw

i := Γi = N\{i} in Theorem 2.1, so that the last three terms in
the upper bound of the theorem disappear. We are left with the first two terms and
the additional term of d2(Po(µ), Po(λ)), which can be estimated by Inequality (A.3)
in Schuhmacher (2005b) (this goes back to Brown and Xia (1995), Inequality (2.8),
but contains a few clarifications). Thus we obtain the required bound.

For the convergence statement note that Condition (i) in Theorem 1.2 implies for
|µ|, |λ| > 0 that µ

|µ| = µn

|µn| converges weakly to λ
|λ| for n → ∞. Hence the fourth

summand in the upper bound goes to zero (see e.g. Dudley (1989), Theorem 11.3.3,
taking into account that d0 ≤ 1). The first and third summands go to zero directly by
Conditions (ii) and (i), respectively. Finally, the second summand can be estimated
as M2|µ| supi≥1 pi, which goes to zero, because (ξni)n,i is a null array, and |µ| goes
to |λ|. 2

3 Application: short term behavior of a spatial birth-death model

Consider a population of n animals that are more or less evenly spread over a
certain area. The i-th animal and its offspring at time t are described by a birth-
death process (BDP) ζi with starting state 1 (see e.g. Feller (1968), Section XVII.5
for the definition). The corresponding processes may be rather strongly dependent
if two animals live close together, but the dependence between processes is expected
to decay with the distance between animals.

In what follows, we provide a rather general modeling framework for this situation
and derive statements about the short-term behavior of populations of the above
form. We use biological terminology (such as “animals” or “predators”) for illustra-
tive purposes, but it should be noted that the model we present is still somewhat
too abstract for a serious modeling attempt of any concrete biological situation. On
the other hand, the model is flexible enough to be adapted to many other contexts
where a birth-death paradigm is reasonable. Examples include the failure and repair
of components in complex systems, attacks in computer networks, absorption and
emission of photons or other particles, or arrivals and departures in a large system
of queues.

Our concrete model is as follows. Let there be an infinite number of animals in
Rd

+ represented by a point measure % =
∑∞

i=1 δzi
. The population described above

12



will consist of the first n of these points, so it is preferable to number them in a
reasonable way, e.g. according to their distance from the origin. We assume that this
infinite group of animals is “evenly spread”, meaning that there is a constant κ > 0
such that

%(B(zi, r))− 1 ≤ κrd (3.1)

for all r ≥ 0 and i ∈ N, where B(z, r) denotes the closed Euclidean ball with center
in z and radius r. Depending on the situation, other metrics on the set {zi; i ∈ N}
and more general functions in r bounding the left hand side of (3.1) might be more
appropriate.

Let ζi, i ∈ N, be identically distributed BDPs with birth rates (αk)k∈Z+ and death
rates (βk)k∈Z+ which all start with one individual at time 0. We think of ζi as the
process that belongs to the original animal at zi. The dependence between these
processes is controlled by functions φ : [0, 1] → [0, 1] and χα, χβ : [0, 1]×R+ → [0, 1]
which are chosen in such a way that

P[ζi and ζj each have a jump in [0, t]] ≤ tφ(t) (3.2)

for i 6= j, and
sup

F∈Fi(t)

E
∣∣∣P[F | Gi(t, r)]− P[F ]

∣∣∣ ≤ χα(t, r) (3.3)

and E
(
ess sup
F∈Fi(t)

∣∣∣P[F | Gi(t, r)]− P[F ]
∣∣∣) ≤ χβ(t, r) (3.4)

for every i, where Fi(t) := σ(ζi|[0,t]) and Gi(t, r) := σ(ζj|[0,t] ; j ∈ N, |zj − zi| > r).
The idea behind this dependence structure is as follows: φ controls the short-term
positive correlation of events (births or deaths) happening at points close together.
In the biological setting, deaths of animals living close together, for example, might
be rather strongly positively correlated, because they might be caused (among other
reasons) by predators roaming the neighborhood or by fights among the animals.
On the other hand, the χ-functions control the short-term dependence over long
distances by providing bounds for the α- and β-mixing coefficients between the evo-
lution of a single process and the evolution of all the processes far enough away. See
Doukhan (1994), Section 1.1 for an introduction to mixing coefficients. Note that
the term bounded by χα in Inequality (3.3) is in fact twice the α-mixing condition
used by Doukhan and elsewhere. In the animal framework, the long-range depen-
dence might be caused by the abundance or scarcity of prey or by the environmental
conditions (such as climate or vegetation).

Consider now the population of the first n animals. Theorem 2.1 yields a result
concerning the aggregated population process, observed over a short period of time
h > 0. Denote by ζ̃i the event point process for the BDP ζi, which we define as the
point process on R+ × {0, 1} that has a point in (t, e) (in other words: a point in t
with mark e) if ζi has an event of type e at time t, where e = 1 codes for a birth and
e = 0 codes for a death. We choose the distance d0 on X := [0, 1] × {0, 1} that is
defined by d0((t1, e1), (t2, e2)) := max(|t2 − t1|, |e2 − e1|) for all (t1, e1), (t2, e2) ∈ X .
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Proposition 3.1 Suppose that the conditions above hold, that is, let (ζi)i∈N be iden-
tically distributed birth-death processes, attached to the points zi of a point measure
% that satisfies Inequality (3.1) for some κ > 0, and with birth and death rates
(αk)k∈Z+ and (βk)k∈Z+, respectively, and let the dependence between the ζi be con-
trolled by Inequalities (3.2), (3.3), and (3.4). Set σk := αk + βk for all k ∈ Z+,
and define furthermore, for n ∈ N and h > 0, the Poisson intensity measure λn,h

on X by λn,h := nh(β1(Leb ⊗ δ0) + α1(Leb ⊗ δ1)) and the time dilation function

θh : R+ × {0, 1} → R+ × {0, 1} by θh(t, e) := (t/h, e). Write ξ
(h)
i := ζ̃iθ

−1
h |X for

the dilated point process of the events of ζi up to time h. Then there is a constant
K := K(κ, σ0, σ1, σ2) > 0, such that

d2

(
L

( n∑
i=1

ξ
(h)
i

)
, Po(λn,h)

)

≤ K inf
r≥0

(
nh2 + log↑(nh)rd

(
h ∨ φ(h)

)
+
√

nh
χα(h, r)

h
+ log↑(nh)

χβ(h, r)

h

)
for any n ∈ N and any h ∈ (0, 1/σ1), where log↑(x) := 1 + log+(x) for x > 0.

An upper bound with explicit constants for general h > 0, which furthermore im-
proves considerably on the above bound for small nh, can be found at the end of
the proof, in Inequality (3.11). To make the result more transparent, we consider
the special case where h = hn = 1/n and some of the other conditions are simplified
as well.

Corollary 3.2 Suppose that the conditions of Proposition 3.1 hold, that additionally
h = hn = 1/n for all n ∈ N, and that there is a function χ : R+ → [0, 1] with
χβ(t, r) ≤ tχ(r) for t ∈ [0, 1], r ∈ R+. Note that λn,1/n =: λ does not depend on n
now. Then there is a constant K := K(κ, σ0, σ1, σ2) > 0, such that

d2

(
L

( n∑
i=1

ξ
(1/n)
i

)
, Po(λ)

)
≤ K inf

r≥0

(
rd + 1

n
+ rdφ(1/n) + χ(r)

)

for any n ∈ N. For φ(t) = O(ta) (t → 0) and χ(r) = O(r−bd) (r → ∞) with
constants a, b > 0, we have

d2

(
L

( n∑
i=1

ξ
(1/n)
i

)
, Po(λ)

)
= O

(
n−(a∧1)b/(1+b)

)
for n →∞,

and by Proposition 1.4(iii) that

n∑
i=1

ξ
(1/n)
i

D−→ Po(λ) for n →∞.

2

PROOF. [Proposition 3.1] A few adaptations are necessary for the application of
Theorem 2.1. Fix n ∈ N and h > 0. We exclude a trivial case by assuming that
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σ1 > 0. Write furthermore Ti for the time of the first event of ζi, T ′
i for the time

between the first and the second event of ζi, and Ei and E ′
i for the types (0 or 1)

of these events, respectively. Note that T ′
i might be infinite if σ0 or σ2 is zero. Set

Si := θh(Ti∧h,Ei) and S ′
i := θh((Ti +T ′

i )∧h,E ′
i), and write ξi := ξ

(h)
i and λ := λn,h.

In order to obtain the right Poisson intensity measure for the theorem, we split up
the initial distance as

d2

(
L

( n∑
i=1

ξi

)
, Po(λ)

)
≤ d2

(
L

( n∑
i=1

ξi

)
, Po(µ)

)
+ d2

(
Po(µ), Po(λ)

)
(3.5)

with µ(B) =
∑n

i=1 P[|ξi| ≥ 1, Si ∈ B] for any Borel set B ⊂ X .

The second summand is estimated by the Brown-Xia inequality that was used for
the proof of Corollary 2.3, as

d2

(
Po(µ), Po(λ)

)
≤ min

(
1, 1.65√

|µ|
, 1.65√

|λ|

)∣∣∣|µ| − |λ|∣∣∣ +
(
1− e−min(|µ|,|λ|)

)
dW

(
µ
|µ| ,

λ
|λ|

)
.

(3.6)
We have

|µ| = n
(
1− e−σ1h

)
, |λ| = σ1nh ,

and

µ

|µ|
(
[0, t]× C

)
=

1− e−σ1ht

1− e−σ1h

(
β1

σ1
δ0 + α1

σ1
δ1

)
(C),

λ

|λ|
(
[0, t]× C

)
= t

(
β1

σ1
δ0 + α1

σ1
δ1

)
(C),

for any t ∈ [0, 1] and C ⊂ {0, 1}. The Wasserstein term in (3.6) can easily be
estimated by noting that, since µ

|µ| and λ
|λ| are product measures that put both the

same mass on [0, 1]× {0}, as well as on [0, 1]× {1},

dW

(
µ
|µ| ,

λ
|λ|

)
= dW

(
µ
|µ|(· × {0, 1}),

λ
|λ|(· × {0, 1})

)
,

where the underlying distances are d0 on the left hand side, and the Euclidean
distance on the right hand side. Using then the fact that, for real-valued random
variables X and Y , the Wasserstein distance between their distributions can be
represented as

dW (L(X),L(Y )) =
∫ ∞

−∞

∣∣∣P[X ≤ x]− P[Y ≤ x]
∣∣∣ dx

(see e.g. Problem 1 in Section 11.8 of Dudley (1989)), yields

dW

(
µ
|µ| ,

λ
|λ|

)
=

∫ 1

0

∣∣∣∣1− e−σ1ht

1− e−σ1h
− t

∣∣∣∣ dt ≤ (σ1h)2

4(1− e−σ1h)
.
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Thus, we obtain in Inequality (3.6)

d2

(
Po(µ), Po(λ)

)
≤ min

(
1, 1.65√

σ1nh

)σ2
1

2
nh2 +

1− e−σ1nh

1− e−σ1h

σ2
1h

2

4
≤ 3σ2

1

4
nh2. (3.7)

The first summand in Inequality (3.5) is suited for the application of Theorem 2.1.
For the terms in the upper bound of that theorem, we obtain

pi = 1− e−σ1h ≤ σ1h, and

p′i = P[Ti + T ′
i ≤ h]

=
∫ h

0

(
P[T ′

i ≤ h− t |Ei = 1] P[Ei = 1]

+ P[T ′
i ≤ h− t |Ei = 0] P[Ei = 0]

)
σ1e

−σ1t dt

=
∫ h

0

(
(1− e−σ2(h−t))α1 + (1− e−σ0(h−t))β1

)
e−σ1t dt

≤ 1

2
(α1σ2 + β1σ0)h

2. (3.8)

Choosing an arbitrary r ≥ 0, and setting Γs
i := {j ∈ N \ {i}; |zj − zi| ≤ r}, and

Γw
i := {j ∈ N; |zj−zi| > r} for the neighborhoods of strongly and weakly dependent

processes, respectively, yields furthermore

P[|ξi| ≥ 1, |ξj| ≥ 1] ≤ hφ(h) and

E
∣∣∣P[|ξi| ≥ 1 | (ξj)j∈Γw

i
]− pi

∣∣∣ ≤ χα(h, r), (3.9)

because ξj is a measurable function of ζj|[0,h] for every j ∈ N, and

pi E dW

(
L(Si | |ξi| ≥ 1),L(Si | |ξi| ≥ 1, (ξj)j∈Γw

i
)
)

≤ pi E dTV

(
L(Si | |ξi| ≥ 1),L(Si | |ξi| ≥ 1, (ξj)j∈Γw

i
)
)

≤ E sup
B∈B[0,1]

∣∣∣P[Si ∈ B, |ξi| ≥ 1 | (ξj)j∈Γw
i
]− P[Si ∈ B, |ξi| ≥ 1]

∣∣∣
+ E sup

B∈B[0,1]

∣∣∣P[Si ∈ B | |ξi| ≥ 1, (ξj)j∈Γw
i
]
(
P[|ξi| ≥ 1]− P[|ξi| ≥ 1 | (ξj)j∈Γw

i
]
)∣∣∣

≤ χβ(h, r) + χα(h, r)
(3.10)

for the same reason. The expectations above are well-defined, because the suprema
can all be replaced by suprema over countable sets, e.g. in lines 2 to 4 by the suprema
over all finite unions of intervals with endpoints in Q ∩ [0, 1] (which can be shown
by using an elementary approximation property for finite measures). This fact also
justifies the inequality between the supremum and the essential supremum used for
the last line.
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Combining the estimates from Inequalities (3.7) to (3.10), we obtain

d2

(
L

( n∑
i=1

ξ
(h)
i

)
, Po(λn,h)

)
≤

(
3σ2

1

4
+ 1

2
(α1σ2 + β1σ0) + M2σ

2
1

)
nh2

+ M2κσ2
1r

dnh2 + M2κrdnhφ(h)

+ (M1 + 2M2)nχα(h, r) + M2nχβ(h, r), (3.11)

where

M1 = 1 ∧
(

1.65√
n(1−e−σ1h)

)
≤ 1 ∧ 5

2
√

σ1nh
and

M2 = 1 ∧
[

2
n(1−e−σ1h)

(
1 + 2 log+(n(1− e−σ1h)/2)

)]
≤ 1 ∧

[
4

σ1nh

(
1 + 2 log+

(
σ1nh

2

))]
for h ≤ 1/σ1. Since r ≥ 0 was arbitrary, this yields the required upper bound. 2

Remark 3.3 (A sketch for the model with randomly positioned animals)
It might be desirable to model also the positions of the animals as random. Then
an upper bound can be calculated in a similar fashion as above, but with a few
important differences: Typically, one wants to drop Condition (3.1) in this situation
and work with %(B(zi, r)) − 1 directly, where % is now a point process and zi its
i-th point (in a suitable enumeration). Accordingly, the index sets Γs

i and Γw
i de-

fined after Inequality (3.8) are now random. It is no problem to adapt Theorem 2.1
so that it comprises random index sets: Γw

i appears only via the random variable
Ξw

i =
∑

j∈Γw
i

IjδSj
in the proof of Theorem 2.1, and it is easily seen that the few

properties of Ξw
i we used remain unchanged for random Γw

i . The set Γs
i on the other

hand, appears only as a summation set in the estimation of the first and the fourth
summand in Inequality (2.2). There, the only difference is that the summation and
the expectation cannot be exchanged. In total, we get the same bound in Theo-
rem 2.1 for the case of random index sets as for the case of deterministic index sets,
except for the third summand, which is, in the random case,

M2

∞∑
i=1

E
( ∑

j∈Γs
i

(
pi1{|ξj |≥1} + 1{|ξi|≥1,|ξj |≥1}

))
. (3.12)

Thus a very similar upper bound for the d2-distance in Proposition 3.1 can be
obtained if % is random, but we have to replace Condition (3.2) by suitable conditions
that control the term (3.12).

A Appendix: Sketch of Stein’s method for Poisson process approxima-
tion

In 1972, Stein published his ingenious method for the normal approximation of
dependent random variables. In Chen (1975) a variant of this method was developed
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for the Poisson case, which was generalized by Barbour (1988) to the Poisson process
case. We only describe the most important ideas of this last version for the case of
the Barbour-Brown distance. For a detailed presentation in a more general context
see Barbour, Holst, and Janson (1992), Chapter 10.

Our goal is to bound

d2

(
L(Ξ),L(η)

)
= sup

f∈F2

∣∣∣Ef(Ξ)− Ef(η)
∣∣∣,

where Ξ is an arbitrary point process on X , and η is a Po(µ)-process. The essential
idea consists in writing ∣∣∣Ef(Ξ)− Ef(η)

∣∣∣ =
∣∣∣EAh(Ξ)

∣∣∣ (A.1)

for f ∈ F2 and then bounding the right hand side instead of the left hand side uni-
formly in f . In Equation (A.1), A is the generator of the spatial immigration-death
process (Z(t))t≥0 on X (that is, the state space is N ) with immigration measure µ
and unit per capita death rate, a pure jump Markov process which has our approx-
imating distribution Po(µ) as equilibrium distribution. A is given by

Ah̃(%) =
∫
X

[
h̃(%− δs)− h̃(%)

]
%(ds) +

∫
X

[
h̃(% + δs)− h̃(%)

]
µ(ds) , % ∈ N , (A.2)

for suitable functions h̃ : N → R. Furthermore h = hf in Equation (A.1), defined
by

h(%) = hf (%) = −
∫ ∞

0

[
E

(
f(Z(t))

∣∣∣ Z(0) = %
)
− Ef(η)

]
dt , % ∈ N , (A.3)

is the solution from Proposition 10.1.1 in Barbour, Holst, and Janson (1992) to the
Stein equation

f(%)− Ef(η) = Ah(%) for % ∈ N . (A.4)

In Lemmas 10.2.3 and 10.2.5 of the same book bounds for the first and second
differences of h are given as

∆1h := sup
%∈N , s∈X

∣∣∣h(% + δs)− h(%)
∣∣∣ ≤ 1 ∧ 1.65√

|µ|
=: M1, (A.5)

and

∆2h : = sup
%∈N , s1,s2∈X

∣∣∣h(% + δs1 + δs2)− h(% + δs1)− h(% + δs2) + h(%)
∣∣∣

≤ 1 ∧
[

2
|µ|

(
1 + 2 log+(|µ|/2)

)]
=: M2. (A.6)

These quantities are usually needed to obtain the bounds for the term |EAh(Ξ)|
in Equation (A.1). Brown, Weinberg, and Xia (2000) present a way of bounding
quantities similar to ∆2h in such a way that the log+-term above can sometimes be
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disposed of. Because the logarithmic term will be negligible for the purposes of this
paper, we avoid doing this more involved considerations.

With the above ingredients it often turns out (like in the main proof of this article)
that the right hand side of Equation (A.1) is surprisingly easy to bound.
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