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Summary: In this paper we show that the family P(lc)
d of probability distributions on Rd with

log-concave densities satisfies a strong continuity condition. In particular, it turns out that weak
convergence within this family entails (i) convergence in total variation distance, (ii) convergence
of arbitrary moments, and (iii) pointwise convergence of Laplace transforms. In this and several

other respects the nonparametric model P(lc)
d behaves like a parametric model such as, for instance,

the family of all d-variate Gaussian distributions. As a consequence of the continuity result, we
prove the existence of nontrivial confidence sets for the moments of an unknown distribution in

P
(lc)
d . Our results are based on various new inequalities for log-concave distributions which are of

independent interest.

1 Introduction
It is well-known that certain statistical functionals such as moments fail to be weakly
continuous on the set of, say, all probability measures on the real line for which these
functionals are well-defined. This is the intrinsic reason why it is impossible to construct
nontrivial two-sided confidence intervals for such functionals. For the mean and other
moments, this fact was pointed out by Bahadur and Savage (1956). Donoho (1988)
extended these considerations by noting that some functionals of interest are at least
weakly semi-continuous, so that one-sided confidence bounds are possible.

When looking at the proofs of the results just mentioned, one realizes that they often
involve rather strange, e.g. multimodal or heavy-tailed, distributions. Natural questions are
whether statistical functionals such as moments become weakly continuous and whether
honest confidence intervals exist for these functionals if attention is restricted to a suitable
nonparametric class of distributions. For instance, one possibility would be to focus on
distributions on a given bounded region. But this may be too restrictive or lead to rather
conservative procedures.

∗ Work supported by Swiss National Science Foundation.
AMS 2010 subject classification: Primary: 62G05, 62G07, 62G15; Secondary: 62A01, 62G35
Key words and phrases: Confidence set, moments, Laplace transform, total variation, weak continuity, weak
convergence.
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278 Schuhmacher -- Hüsler -- Dümbgen

Alternatively we propose a qualitative constraint. When asking a statistician to draw
a typical probability density, she or he will often sketch a bell-shaped, maybe skewed
density. This suggests unimodality as a constraint, but this would not rule out heavy tails.
In the present paper we favor the stronger though natural constraint of log-concavity,
also called strong unimodality. One should note here that additional assumptions such as
given bounded support or log-concavity can never be strictly verified based on empirical
data alone; see Donoho (1988, Section 2).

Before proceding with log-concavity, let us consider briefly the parametric model
Nd of all nondegenerate Gaussian distributions on Rd . Suppose that a sequence of dis-
tributions Pn = Nd(μn,�n) ∈ Nd converges weakly to P = Nd(μ,�) ∈ Nd . This is
easily shown to be equivalent to μn → μ and �n → � as n → ∞. But this implies
convergence in total variation distance, i.e.

lim
n→∞

∫
Rd

| fn(x) − f(x)| dx = 0,

where fn and f denote the Lebesgue densities of Pn and P, respectively. Furthermore,
weak convergence of (Pn)n to P inNd implies convergence of all moments and pointwise
convergence of the Laplace-transforms. That means, for all d-variate polynomials � :
R

d → R,

lim
n→∞

∫
�(x) fn(x) dx =

∫
�(x) f(x) dx,

and for arbitrary θ ∈ Rd ,

lim
n→∞

∫
exp(θ�x) fn(x) dx =

∫
exp(θ�x) f(x) dx.

In the present paper we show that the nonparametric model P(lc)
d of all log-concave

probability distributions P on Rd has the same properties. Log-concavity of P means that
it admits a Lebesgue density f of the form

f(x) = exp(ϕ(x))

for some concave function ϕ : Rd → [−∞,∞). Obviously the model P(lc)
d contains the

parametric family Nd . All of its members are unimodal in that the level sets {x ∈ Rd :
f(x) ≥ c}, c > 0, are bounded and convex. It is further known that product measures,
marginals, convolutions, and weak limits (if a limiting density exists) of log-concave
distributions are log-concave; see Dharmadhikari and Joag-dev (1988), Chapter 2. These
closedness properties are again shared by the class of Gaussian distributions. The results
in the present paper make a substantial contribution to the list of such shared properties
and thus promote the view of the model P(lc)

d as a viable nonparametric substitute for the
Gaussian modelNd .

The univariate class P(lc)
1 has been studied extensively; see Bagnoli and Bergstrom

(2005), Dümbgen and Rufibach (2009) and the references therein. Many standard models
of univariate distributions belong to this nonparametric family, e.g. all gamma distribu-
tions with shape parameter ≥ 1, and all beta distributions with both parameters ≥ 1.
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Bagnoli and Bergstrom (2005) establish various properties of the corresponding distri-
bution and hazard functions. Nonparametric maximum likelihood estimation of a distri-
bution in P(lc)

1 has been studied by Pal et al. (2006) and Dümbgen and Rufibach (2009).
In particular, the latter two papers provide consistency results for these estimators. The
findings of the present paper allow to strengthen these results considerably by showing
that consistency in any reasonable sense implies consistency of all moments and, much
more generally, consistency of the densities in exponentially weighted total variation dis-
tance. Algorithms for the one-dimensional maximum-likelihood estimator are described
by Dümbgen et al. (2007).

The multivariate class P(lc)
d is in various respects more difficult to treat. It has been

considered in Dharmadhikari and Joag-dev (1988) and An (1998). Comprehensive treat-
ments of the state of the art in multivariate log-concave density modeling and estimation
are Cule et al. (2010) and the survey paper by Walther (2009). An explicit algorithm
for the nonparametric maximum likelihood estimator is provided by Cule et al. (2009).
Consistency of this estimator has been verified by Cule and Samworth (2010) and Schuh-
macher and Dümbgen (2010). Again the results of the present paper allow to transfer
consistency properties into much stronger modes of consistency.

The remainder of this paper is organized as follows. In Section 2 we present our main
result and some consequences, including an existence proof of non-trivial confidence sets
for moments of log-concave distributions. Section 3 collects some basic inequalities for
log-concave distributions which are essential for the main results and of independent in-
terest. Most proofs are deferred to Section 4. For more detailed proofs and some additional
general inequalities we refer to the technical report by Schuhmacher et al. (2009).

2 The main results
Let us first introduce some notation. Throughout this paper, ‖ · ‖ stands for Euclidean
norm. The closed Euclidean ball with center x ∈ Rd and radius ε ≥ 0 is denoted by
B(x, ε). With int(S) and ∂S we denote the interior and boundary, respectively, of a set
S ⊂ Rd .

Theorem 2.1 Let P, P1, P2, P3 . . . be probability measures in P(lc)
d with densities f , f1,

f2, f3, . . . , respectively, such that Pn → P weakly as n → ∞. Then the following two
conclusions hold true:
(i) The sequence ( fn) converges uniformly to f on any closed set of continuity points
of f .
(ii) Let A : Rd → R be a sublinear function, i.e. A(x + y) ≤ A(x) + A(y) and
A(rx) = rA(x) for all x, y ∈ Rd and r ≥ 0. If

f(x) exp(A(x)) → 0 as ‖x‖ → ∞, (2.1)

then
∫
Rd exp(A(x)) f(x) dx < ∞ and

lim
n→∞

∫
Rd

exp(A(x))
∣∣ fn(x) − f(x)

∣∣ dx = 0. (2.2)
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280 Schuhmacher -- Hüsler -- Dümbgen

It is well-known from convex analysis that ϕ = log f is continuous on int({ϕ >

−∞}) = int({ f > 0}). Hence the discontinuity points of f , if any, are contained in
∂{ f > 0}. But { f > 0} is a convex set, so its boundary has Lebesgue measure zero
(cf. Lang 1986). Therefore Part (i) of Theorem 2.1 implies that ( fn)n converges to f
pointwise almost everywhere.

Note also that f(x) ≤ C1 exp(−C2‖x‖) for suitable constants C1 = C1( f ) > 0 and
C2 = C2( f ) > 0; see Corollary 3.4 in Section 3. Hence one may take A(x) = c‖x‖
for any c ∈ [0, C2) in order to satisfy (2.1). Theorem 2.1 is a multivariate version of
Hüsler (2008, Theorem 2.1). It is also more general than findings of Cule and Samworth
(2010) who treated the special case of A(x) = ε‖x‖ for some small ε > 0 with different
techniques.

Before presenting the conclusions about moments and moment generating functions
announced in the introduction, let us provide some information about the moment gener-
ating functions of distributions in P(lc)

d :

Proposition 2.2 For a distribution P ∈ P(lc)
d let �(P) be the set of all θ ∈ Rd such that∫

exp(θ�x) P(dx) < ∞. This set �(P) is convex, open and contains 0. Let θ ∈ Rd and
ε > 0 such that B(θ, ε) ⊂ �(P). Then

A(x) := θ�x + ε‖x‖
defines a sublinear function A on Rd such that the density f of P satisfies

lim‖x‖→∞ exp(A(x)) f(x) = 0.

Note that for any d-variate polynomial � and arbitrary ε > 0 there exists an R =
R(�, ε) > 0 such that |�(x)| ≤ exp(ε‖x‖) for ‖x‖ > R. Hence part (ii) of Theorem 2.1
and Proposition 2.2 entail the first part of the following theorem:

Theorem 2.3 Under the conditions of Theorem 2.1, for any θ ∈ �(P) and arbitrary
d-variate polynomials � : Rd → R, the integral

∫
Rd exp(θ�x)|�(x)| f(x) dx is finite and

lim
n→∞

∫
Rd

exp(θ�x)|�(x)|∣∣ fn(x) − f(x)
∣∣ dx = 0.

Moreover, for any θ ∈ Rd \ �(P),

lim
n→∞

∫
Rd

exp(θ�x) fn(x) dx = ∞.

Existence of nontrivial confidence sets for moments. With the previous results we can
prove the existence of confidence sets for arbitrary moments, modifying Donoho’s (1988)
recipe. Let H = Hd denote the set of all closed halfspaces in Rd . For two probability
measures P and Q on Rd let

‖P − Q‖H := sup
H∈H

∣∣P(H ) − Q(H )
∣∣.
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It is well-known from empirical process theory (e.g. van der Vaart and Wellner 1996,
Section 2.19) that for any α ∈ (0, 1) there exists a universal constant cα,d such that

P

(∥∥P̂n − P
∥∥
H

≥ n−1/2cα,d

)
≤ α

for arbitrary distributions P on Rd and the empirical distribution P̂n of independent
random vectors X1, X2, . . . , Xn ∼ P. In particular, Massart’s (1990) inequality yields
the constant cα,1 = (log(2/α)/2

)1/2.

Under the assumption that P ∈ P(lc)
d , a (1 − α)-confidence set for the distribution P

is given by

Cα,n = Cα,n(X1, X2, . . . , Xn) :=
{

Q ∈ P(lc)
d : ∥∥Q − P̂n

∥∥
H

≤ n−1/2cα,d

}
.

This entails simultaneous (1 − α)-confidence sets for all integrals
∫

�(x) P(dx), where
� : Rd → R is an arbitrary polynomial, namely,

C(�)
α,n = C(�)

α,n (X1, X2, . . . , Xn) :=
{∫

�(x) Q(dx) : Q ∈ Cα,n

}
.

Since convergence with respect to ‖ · ‖H implies weak convergence, Theorem 2.3 implies
the consistency of the confidence sets C(�)

α,n , in the sense that

sup
t∈C(�)

α,n

∣∣∣ t −
∫

�(x) P(dx)

∣∣∣→p 0 as n → ∞.

Note that this construction proves existence of honest simultaneous confidence sets
for arbitrary moments. But their explicit computation requires substantial additional work
and is beyond the scope of the present paper.

3 Various inequalities for PPP(lc)
d

In this section we provide a few inequalities for log-concave distributions which are
essential for the main result or are of independent interest. Let us first introduce some
notation. The convex hull of a nonvoid set S ⊂ Rd is denoted by conv(S), the Lebesgue
measure of a Borel set S ⊂ Rd by |S|.

Lemma 3.1 Let P ∈ P(lc)
d with density f . Let x0, x1, . . . , xd be fixed points in Rd such

that 
 := conv{x0, x1, . . . , xd} has nonvoid interior. Then

d∏
j=0

f(x j) ≤
( P(
)

|
|
)d+1

.

Suppose that x1, x2, . . . , xd ∈ { f > 0}, and define f̃ (x1, . . . , xd ) :=
(∏d

i=1 f(xi)
)1/d

.

Then

f(x0)

f̃ (x1, . . . , xd )
≤
( P(
)

f̃ (x1, . . . , xd )|
|
)d+1
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282 Schuhmacher -- Hüsler -- Dümbgen

If the right hand side is less than or equal to one, then

f(x0)

f̃ (x1, . . . , xd )
≤ exp

(
d − d

f̃ (x1, . . . , xd )|
|
P(
)

)
.

This lemma entails various upper bounds including a subexponential tail bound for
log-concave densities.

Lemma 3.2 Let x0, x1, . . . , xd ∈ Rd and 
 as in Lemma 3.1. Then for any P ∈ P(lc)
d

with density f such that x0, x1, . . . , xd ∈ { f > 0} and arbitrary y ∈ 
,

min
i=0,...,d

f(xi) ≤ f(y) ≤
(

P(
)

|
|
)d+1(

min
i=0,...,d

f(xi)
)−d

.

Lemma 3.3 Let x0, x1, . . . , xd ∈ Rd as in Lemma 3.1. Then there exists a constant
C = C(x0, x1, . . . , xd ) > 0 with the following property: For any P ∈ P(lc)

d with density
f such that x0, x1, . . . , xd ∈ { f > 0} and arbitrary y ∈ Rd,

f(y) ≤ max
i=0,...,d

f(xi) H
(

C min
i=0,...,d

f(xi) (1 + ‖y‖2)1/2
)
,

where

H(t) :=
{

t−(d+1) for t ∈ [0, 1],
exp(d − dt) for t ≥ 1.

Corollary 3.4 For any P ∈ P(lc)
d with density f there exist constants C1 = C1(P) > 0

and C2 = C2(P) > 0 such that

f(x) ≤ C1 exp(−C2‖x‖) for all x ∈ Rd.

4 Proofs

4.1 Proofs for Section 3
Our proof of Lemma 3.1 is based on a particular representation of Lebesgue measure on
simplices: Let


o := {u ∈ [0, 1]d :
d∑

i=1

ui ≤ 1
}
.

Then for any measurable function h : 
o → [0,∞),
∫


o

h(u) du = 1

d! E h(B1, B2, . . . , Bd ),
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where Bi := Ei

/∑d
j=0 E j with independent, standard exponentially distributed random

variables E0, E1, . . . , Ed . This follows from general considerations about gamma and
multivariate beta distributions, e.g. in Cule and Dümbgen (2008). In particular, |
o|
= 1/d!. Moreover, each variable Bi is beta distributed with parameters 1 and d, and
E(Bi) = 1/(d + 1).

Proof of Lemma 3.1: Any point x ∈ 
 may be written as

x(u) := x0 +
d∑

i=1

ui(xi − x0) =
d∑

i=0

ui xi

for some u ∈ 
o, where u0 := 1 −∑d
i=1 ui . In particular,

|
|
|
o| = ∣∣det(x1 − x0, x2 − x0, . . . , xd − x0)

∣∣.
By concavity of ϕ := log f ,

ϕ(x(u)) ≥
d∑

i=0

uiϕ(xi)

for any u = (ui)
d
i=1 ∈ 
o and u0 = 1 −∑d

i=1 ui . Hence

P(
)

|
| = 1

|
o|
∫


o

exp
(
ϕ(x(u))

)
du

= E exp
(
ϕ
( d∑

i=0

Bi xi

))
≥ E exp

( d∑
i=0

Biϕ(xi)
)
,

and by Jensen’s inequality, the latter expected value is not less than

exp
( d∑

i=0

E(Bi)ϕ(xi)
)

= exp
( 1

d + 1

d∑
i=0

ϕ(xi)
)

=
( d∏

i=0

f(xi)

)1/(d+1)

.

This yields the first assertion of the lemma.
The inequality

∏d
i=0 f(xi) ≤ (P(
)/|
|)d+1 may be rewritten as

f(x0) f̃ (x1, . . . , xd )d ≤
( P(
)

|
|
)d+1

,

and dividing both sides by f̃ (x1, . . . , xd )d+1 yields the second assertion.
As to the third inequality, suppose that f(x0) ≤ f̃ (x1, . . . , xd ), which is equivalent to

ϕ0 := ϕ(x0) being less than or equal to ϕ̄ := log f̃ (x1, . . . , xd ) = d−1∑d
i=1 ϕ(xi). Then

P(
)

|
| ≥ E exp
( d∑

i=0

Biϕ(xi)
)

= E exp
(

B0ϕ0 + (1 − B0)

d∑
i=1

B̃iϕ(xi)
)
,
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where B̃i := Ei
/∑d

j=1 E j for 1 ≤ i ≤ d. It is well-known (e.g. Cule and Dümbgen

2008) that B0 and
(
B̃i
)d

i=1 are stochastically independent, where E
(
B̃i
) = 1/d. Hence it

follows from Jensen’s inequality and B0 ∼ Beta(1, d) that

P(
)

|
| ≥ EE
(

exp
(

B0ϕ0 + (1 − B0)

d∑
i=1

B̃iϕ(xi)
) ∣∣∣∣ B0

)

≥ E exp

(
E

(
B0ϕ0 + (1 − B0)

d∑
i=1

B̃iϕ(xi)

∣∣∣ B0

))

= E exp
(
B0ϕ0 + (1 − B0)ϕ̄

)

=
∫ 1

0
d(1 − t)d−1 exp

(
tϕ0 + (1 − t)ϕ̄

)
dt

= f̃ (x1, . . . , xd )

∫ 1

0
d(1 − t)d−1 exp

(−t(ϕ̄ − ϕ0)
)

dt

≥ f̃ (x1, . . . , xd )

∫ 1

0
d(1 − t)d−1 exp

(
log(1 − t)(ϕ̄ − ϕ0)

)
dt

= f̃ (x1, . . . , xd )

∫ 1

0
d(1 − t)ϕ̄−ϕ0+d−1 dt

= f̃ (x1, . . . , xd )
d

d + ϕ̄ − ϕ0
.

Thus ϕ̄ − ϕ0 ≥ d f̃ (x1, . . . , xd )|
|/P(
) − d, which is equivalent to

f(x0)

f̃ (x1, . . . , xd )
≤ exp

(
d − d

f̃ (x1, . . . , xd )|
|
P(
)

)
.

�

We first prove Lemma 3.3 because this provides a tool for the proof of Lemma 3.2 as
well.

Proof of Lemma 3.3: At first we investigate how the size of 
 changes if we replace one
of its vertices with another point. Note that for any fixed index j ∈ {0, 1, . . . , d},

∣∣det(xi − x j : i = j)
∣∣ = | det(X)| with X :=

(
x0 x1 . . . xd

1 1 . . . 1

)
.

Moreover, any point y ∈ Rd has a unique representation y = ∑d
i=0 λi xi with scalars λ0,

λ1, . . . , λd summing to one. Namely,

(λi)
d
i=0 = X−1

(
y
1

)
.
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Hence the set 
 j (y) := conv
({xi : i = j} ∪ {y}) has Lebesgue measure

|
 j(y)| = 1

d!
∣∣∣∣det

(
x0 . . . x j−1 y x j+1 . . . xd

1 . . . 1 1 1 . . . 1

)∣∣∣∣

= 1

d!
∣∣∣∣

d∑
i=0

λi det
(

x0 . . . x j−1 xi x j+1 . . . xd
1 . . . 1 1 1 . . . 1

)∣∣∣∣

= 1

d! |λ j || det(X)|

= |λ j ||
|.

Consequently,

max
j=0,1,...,d

|
 j(y)| = |
| max
j=0,1,...,d

|λ j |

= |
|
∥∥∥∥X−1

(
y
1

)∥∥∥∥∞

≥ |
|(d + 1)−1/2
∥∥∥∥X−1

(
y
1

)∥∥∥∥
≥ |
|(d + 1)−1/2σmax(X)−1(‖y‖2 + 1)1/2,

where σmax(X) > 0 is the largest singular value of X.
Now we consider any log-concave probability density f . Let fmin and fmax denote the

minimum and maximum, respectively, of { f(xi) : i = 0, . . . , d}, where fmin is assumed
to be greater than zero. Applying Lemma 3.1 to 
 j(y) in place of 
 with suitably chosen
index j , we may conclude that

f(y) ≤ fmax
(
C fmin(‖y‖2 + 1)1/2)−(d+1)

,

where C = C(x0, . . . , xd ) := |
|(d + 1)−1/2σmax(X)−1.
Moreover, in case of C fmin(‖y‖2 + 1)1/2 ≥ 1,

f(y) ≤ fmax exp
(
d − dC fmin(‖y‖2 + 1)1/2). �

Proof of Lemma 3.2: Let y ∈ 
, i.e. y = ∑d
i=0 λi xi with a unique vector λ = (λi)

d
i=0

in [0, 1]d+1 whose components sum to one. With 
 j(y) as in the proof of Lemma 3.3,
elementary calculations reveal that


 =
⋃
j∈J


 j (y),

where J := { j : λ j > 0}. Moreover, all these simplices 
 j(y), j ∈ J , have nonvoid
interior, and |
 j(y) ∩ 
k(y)| = 0 for different j, k ∈ J . Consequently it follows from
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286 Schuhmacher -- Hüsler -- Dümbgen

Lemma 3.1 that

P(
)

|
| =
∑
j∈J

|
 j(y)|
|
| · P(
 j (y))

|
 j(y)|

≥
∑
j∈J

|
 j(y)|
|
| ·

(
f(y)

∏
i = j

f(xi)
)1/(d+1)

≥
∑
j∈J

|
 j(y)|
|
| · f(y)1/(d+1)

(
min

i=0,...,d
f(xi)

)d/(d+1)

= f(y)1/(d+1)
(

min
i=0,...,d

f(xi)
)d/(d+1)

.

This entails the asserted upper bound for f(y). The lower bound follows from the ele-
mentary fact that any concave function on the simplex 
 attains its minimal value in one
of the vertices x0, x1, . . . , xd . �

4.2 Proof of the main results
Note first that { f > 0} is a convex set with nonvoid interior. For notational convenience
we may and will assume that

0 ∈ int{ f > 0}.
For if xo is any fixed interior point of { f > 0} we could just shift the coordinate system
and consider the densities f̃ := f(xo + ·) and f̃ n := fn(xo + ·) in place of f and fn ,
respectively. Note also that A(xo + x) − A(x) ∈ [−A(−xo), A(xo)

]
, due to subadditivity

of A.
In our proof of Theorem 2.1, Part (i), we utilize two simple inequalities for log-concave

densities:

Lemma 4.1 Let x0, x1, . . . , xd ∈ Rd such that 
 := conv{x0, x1, . . . , xd} has nonvoid
interior. For j = 0, 1, . . . , d define the “corner simplex”


 j := {2x j − x : x ∈ 

}
,

i.e. the reflection of 
 at the point x j. Let P ∈ P(lc)
d with density f = exp ◦ϕ. If P(
 j) > 0

for all j = 0, 1, . . . , d, then 
 ⊂ int{ f > 0}, and

min
j=0,1,...,d

log
P(
 j)

|
| ≤ min
x∈


ϕ(x) ≤ log
P(
)

|
|
≤ max

x∈

ϕ(x) ≤ (d + 1) log

P(
)

|
| − d min
j=0,1,...,d

log
P(
 j )

|
| .

Figure 4.1 illustrates the definition of the corner simplices and a key statement in the
proof of Lemma 4.1.
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Figure 4.1 A simplex 
 and its corner simplices 
 j .

Lemma 4.2 Suppose that B(0, δ) ⊂ { f > 0} for some δ > 0. For t ∈ (0, 1) define
δt := (1 − t)δ/(1 + t). Then for any y ∈ Rd,

sup
x∈B(y,δt)

f(x) ≤
(

inf
v∈B(0,δ)

f(v)
)1−1/t( P(B(ty, δt))

|B(ty, δt)|
)1/t

.

This lemma involves three closed balls B(0, δ), B(ty, δt) and B(y, δt); see Figure 4.2 for
an illustration of these and the key argument of the proof.

Figure 4.2 The three closed balls in Lemma 4.2.
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288 Schuhmacher -- Hüsler -- Dümbgen

Proof of Lemma 4.1: Suppose that all corner simplices satisfy P(
 j) > 0. Then for
j = 0, 1, . . . , d there exists an interior point z j of 
 j with f(z j) > 0, that means,
z j = 2x j −∑d

i=0 λi j xi with positive numbers λi j such that
∑d

i=0 λi j = 1. With the
matrices

X :=
(

x0 x1 . . . xd

1 1 . . . 1

)
, Z :=

(
z0 z1 . . . zd

1 1 . . . 1

)
and � :=

⎛
⎜⎝

λ00 . . . λ0d
...

...

λd0 . . . λdd

⎞
⎟⎠

in R(d+1)×(d+1) we may write

Z = X(2I − �).

But the matrix 2I − � is nonsingular with inverse

M := (2I − �)−1 = 2−1(I − 2−1�)−1 =
∞∑

�=0

2−(�+1)��.

The latter power series converges, because �� has positive components for all � ≥ 1, and
via induction on � ≥ 0 one can show that all columns of �� sum to one. Consequently, X =
Z M, i.e. for each index j , the point x j may be written as

∑d
i=0 μi j zi with positive numbers

μi j such that
∑d

i=0 μi j = 1. This entails that 
 is a subset of int conv{z0, z1, . . . , zd} ⊂
int{ f > 0}; see also Figure 4.1.

Since minx∈
 f(x) ≤ P(
)/|
| ≤ maxx∈
 f(x), the inequalities

min
x∈


ϕ(x) ≤ log
P(
)

|
| ≤ max
x∈


ϕ(x)

are obvious. By concavity of ϕ, its minimum over 
 equals ϕ(x jo) for some index
jo ∈ {0, 1, . . . , d}. But then for arbitrary x ∈ 
 and y := 2x jo − x ∈ 
 jo , it follows from
x jo = 2−1(x + y) and concavity of ϕ that

ϕ(x jo) ≥ ϕ(x) + ϕ(y)

2
≥ ϕ(x jo) + ϕ(y)

2
,

so that ϕ ≤ ϕ(x jo) on 
 jo . Hence

min
x∈


ϕ(x) = ϕ(x jo) ≥ log
P(
 jo)

|
| .

Finally, Lemma 3.2 entails that

max
x∈


ϕ(x) ≤ (d + 1) log
P(
)

|
| − d min
j=0,1,...,d

ϕ(x j)

≤ (d + 1) log
P(
)

|
| − d min
j=0,1,...,d

log
P(
 j )

|
| .
�
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Proof of Lemma 4.2: The main point is to show that for any point x ∈ B(y, δt),

B(ty, δt) ⊂ (1 − t)B(0, δ) + tx,

i.e. any point w ∈ B(ty, δt) may be written as (1 − t)v + tx for a suitable v ∈ B(0, δ);
see also Figure 4.2. But note that the equation (1 − t)v + tx = w is equivalent to
v = (1 − t)−1(w − tx). This vector v belongs indeed to B(0, δ), because

‖v‖ = (1 − t)−1‖w − tx‖ = (1 − t)−1
∥∥w − ty + t(y − x)

∥∥ ≤ (1 − t)−1(δt + tδt) = δ

by definition of δt .
This consideration shows that for any point x ∈ B(y, δt) and any point w ∈ B(ty, δt),

f(w) ≥ f(v)1−t f(x)t ≥ J1−t
0 f(x)t

with v = (1−t)−1(w−tx) ∈ B(0, δ) and J0 := infv∈B(0,δ) f(v). Averaging this inequality
with respect to w ∈ B(ty, δt) yields

P(B(ty, δt))

|B(ty, δt)| ≥ J1−t
0 f(x)t .

Since x ∈ B(y, δt) is arbitrary, this entails the assertion of Lemma 4.2. �

Proof of Theorem 2.1, Part (i): Our proof is split into three steps.

Step 1: The sequence ( fn)n converges to f uniformly on any compact subset of
int{ f > 0}.
By compactness, this claim is a consequence of the following statement: For any interior
point y of { f > 0} and any η > 0 there exists a neighborhood 
(y, η) of y such that

lim sup
n→∞

sup
x∈
(y,η)

∣∣∣ fn(x)

f(x)
− 1
∣∣∣ ≤ η.

To prove the latter statement, fix any number ε ∈ (0, 1). Since f is continuous on
int{ f > 0}, there exists a simplex 
 = conv{x0, x1, . . . , xd} such that y ∈ int 
 and

f ∈ [(1 − ε) f(y), (1 + ε) f(y)
]

on 
 ∪ 
0 ∪ 
1 ∪ · · · ∪ 
d

with the corner simplices 
 j defined as in Lemma 4.1. Since the boundary of any simplex

̃ is contained in the union of d + 1 hyperplanes, it satisfies P(∂
̃) = 0, so that weak
convergence of (Pn)n to P implies that

lim
n→∞ Pn(
̃) = P(
̃).

Therefore it follows from Lemma 4.1 that

lim inf
n→∞ inf

x∈


fn(x)

f(x)
≥ lim inf

n→∞
1

(1 + ε) f(y)
inf
x∈


fn(x)

≥ lim inf
n→∞

1

(1 + ε) f(y)
min

j=0,1,...,d

Pn(
 j)

|
|
= 1

(1 + ε) f(y)
min

j=0,1,...,d

P(
 j)

|
| ≥ 1 − ε

1 + ε
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and

lim sup
n→∞

sup
x∈


fn(x)

f(x)
≤ lim sup

n→∞
1

(1 − ε) f(y)
sup
x∈


fn(x)

≤ 1

(1 − ε) f(y)

( P(
)

|
|
)d+1(

min
j=0,1,...,d

P(
 j)

|
|
)−d

≤
(1 + ε

1 − ε

)d+1
.

For ε sufficiently small, both (1 − ε)/(1 + ε) ≥ 1 − η and
(
(1 + ε)/(1 − ε)

)d+1 ≤ 1 + η,
which proves the assertion of step 1.

Step 2: If f is continuous at y ∈ Rd with f(y) = 0, then for any η > 0 there exists
a number δ(y, η) > 0 such that

lim sup
n→∞

sup
x∈B(y,δ(y,η))

fn(x) ≤ η .

For this step we employ Lemma 4.2. Let δ0 > 0 such that B(0, δ0) is contained in
int{ f > 0}. Furthermore, let J0 > 0 be the minimum of f over B(0, δ0). Then step 1
entails that

lim inf
n→∞ inf

x∈B(0,δ0)
fn(x) ≥ J0.

Moreover, for any t ∈ (0, 1) and δt := (1 − t)δ0/(1 + t),

lim sup
n→∞

sup
x∈B(y,δt)

fn(x) ≤ J1−1/t
0 lim sup

n→∞

( Pn(B(ty, δt))

|B(y, δt)|
)1/t

≤ J1−1/t
0

( P(B(ty, δt))

|B(y, δt)|
)1/t

≤ J1−1/t
0

(
sup

x∈B(ty,δt)

f(x)
)1/t

.

But the latter bound tends to zero as t ↑ 1.

Final step: ( fn)n converges to f uniformly on any closed set of continuity points of f .

Let S be such a closed set. Then Steps 1 and 2 entail that

lim
n→∞ sup

x∈S∩B(0,ρ)

∣∣ fn(x) − f(x)
∣∣ = 0

for any fixed ρ ≥ 0, because S ∩ B(0, ρ) is compact, and any point y ∈ S \ int{ f > 0}
satisfies f(y) = 0.

On the other hand, let 
 be a nondegenerate simplex with corners x0, x1, . . . , xd ∈
int{ f > 0}. Step 1 also implies that limn→∞ fn(xi) = f(xi) for i = 0, 1, . . . , d, so that
Lemma 3.3 entails that

lim sup
n→∞

sup
x : ‖x‖≥ρ

max
{

fn(x), f(x)
} ≤ max

i=0,...,d
f(xi)H

(
C min

i=0,...,d
f(xi)(1 + ρ2)1/2

)

(4.1)
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for any ρ ≥ 0 with a constant C = C(x0, . . . , xd ) > 0. Since this bound tends to zero as
ρ → ∞, the assertion of Theorem 2.1, Part (i) follows.

Our proof of Theorem 2.1, Part (ii), is based on Part (i) and an elementary result about
convex sets:

Lemma 4.3 Let C be a convex subset of Rd containing B(0, δ) for some δ > 0. If y ∈ C,
then

B(ty, (1 − t)δ) ⊂ C for all t ∈ [0, 1].
If y ∈ Rd \ C, then

B(λy, (λ − 1)δ) ⊂ R
d \ C for all λ ≥ 1.

One consequence of this lemma is the well-known fact that the boundary of the convex
set { f > 0} has Lebesgue measure zero. Namely, for any unit vector u ∈ Rd there exists
at most one number r > 0 such that ru ∈ ∂{ f > 0}. Lemma 4.3 is needed to obtain
a refinement of this fact. Its proof, which is elementary, is given by Schuhmacher et al.
(2009).

Proof of Theorem 2.1, Part (ii). It follows from (4.1) in the proof of Part (i) with ρ = 0
that

lim sup
n→∞

sup
x∈Rd

fn(x) < ∞.

Since ( fn)n converges to f pointwise onRd \∂{ f > 0}, and since ∂{ f > 0} has Lebesgue
measure zero, dominated convergence yields

lim sup
n→∞

∫
Rd

exp(A(x))
∣∣ fn(x) − f(x)

∣∣ dx

= lim sup
n→∞

∫
Rd\B(0,γ)

exp(A(x))
∣∣ fn(x) − f(x)

∣∣ dx

≤ lim sup
n→∞

∫
Rd\B(0,γ)

exp(A(x)) max
(

fn(x), f(x)
)

dx

for any fixed γ > 0.
It follows from Assumption (2.1) that for a suitable ρ > 0,

A(x) + ϕ(x) − ϕ(0) ≤ −1 whenever ‖x‖ ≥ ρ.

Utilizing sublinearity of A and concavity of ϕ, we may deduce that for x ∈ Rd with
‖x‖ ≥ ρ even

A(x) + ϕ(x) = ϕ(0) + A(x) + ‖x‖ϕ(‖x‖u) − ϕ(0)

‖x‖
≤ ϕ(0) + A(x) + ‖x‖ϕ(ρu) − ϕ(0)

ρ

= ϕ(0) + ρ−1‖x‖(A(ρu) + ϕ(ρu) − ϕ(0)
)

≤ ϕ(0) − ρ−1‖x‖,
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292 Schuhmacher -- Hüsler -- Dümbgen

where u := ‖x‖−1x. In particular,
∫
Rd exp(A(x)) f(x) dx is finite. Now let δ > 0 such

that B(0, δ) ⊂ { f > 0}. It follows from Lemma 4.3 that for any unit vector u ∈ Rd , either
2ρu ∈ { f > 0} and B(ρu, δ/2) ⊂ { f > 0}, or 2ρu ∈ { f = 0} and B(3ρu, δ/2) ⊂ { f =
0}. Hence

K := {0} ∪
{

x ∈ Rd : ‖x‖ ∈ {ρ, 3ρ}, inf
y∈∂{ f>0} ‖x − y‖ ≥ δ/2

}

defines a compact subset of Rd \ ∂{ f > 0} such that

K ∩ {ρu, 3ρu} = ∅ for any unit vector u ∈ Rd .

According to Part (i), ( fn)n converges to f uniformly on K . Thus for fixed numbers
ε′ > 0, ε′′ ∈ (0, ρ−1) and sufficiently large n, the log-densities ϕn := log fn satisfy the
following inequalities:

A(ru) + ϕn(ru) = ϕn(0) + r
(

A(u) + ϕn(ru) − ϕn(0)

r

)

≤ ϕn(0) + r
(

A(u) + min
s=ρ,3ρ

ϕn(su) − ϕn(0)

s

)

≤ ϕ(0) + ε′ − ε′′r

for all unit vectors u ∈ Rd and r ≥ 3ρ. Hence for γ ≥ 3ρ,

lim sup
n→∞

∫
Rd\B(0,γ)

exp(A(x)) max
(

fn(x), f(x)
)

dx

≤ f(0)

∫
Rd\B(0,γ)

exp
(
ε′ − ε′′‖x‖) dx

= const(d) f(0)

∫ ∞

γ

rd−1 exp(ε′ − ε′′r) dr

→ 0 as γ → ∞. �

Proof of Proposition 2.2: It follows from convexity of exp(·) that �(P) is a convex subset
of Rd , and obviously it contains 0. Now we verify it to be open. For any fixed θ ∈ �(P)

we define a new probability density

f̃ (x) := C−1 exp(θ�x) f(x) = exp
(
θ�x + ϕ(x) − log C

)

with C := ∫
Rd exp(θ�x) f(x) dx. Obviously, f̃ is log-concave, too. Thus, by Corollary3.4,

there exist constants C1, C2 > 0 such that f̃ (x) ≤ C1 exp(−C2‖x‖) for all x ∈ Rd . In
particular,

∞ > C
∫
Rd

exp(δ�x) f̃ (x) dx =
∫
Rd

exp
(
(θ + δ)�x

)
f(x) dx

for all δ ∈ Rd with ‖δ‖ < C2. This shows that �(P) is open.



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a

y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e

 o
n

ly
. O

th
e

r u
s
e

 is
 o

n
ly

 a
llo

w
e

d
 w

ith
 w

ritte
n

 p
e

rm
is

s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Multivariate log-concave distributions as a nearly parametric model 293

Finally, let θ ∈ �(P) and ε > 0 such that B(θ, ε) ⊂ �(P). With the previous argu-
ments one can show that for each unit vector u ∈ Rd there exist constants D(u) ∈ R and
C(u) > 0 such that (θ + εu)�x + ϕ(x) ≤ D(u) − C(u)‖x‖ for all x ∈ Rd . By compact-
ness, there exist finitely many unit vectors u1, u2, . . . , um such that the corresponding
closed balls B

(
ui, (2ε)−1C(ui)

)
cover the whole unit sphere inRd . Consequently, for any

x ∈ Rd\{0} and its direction u(x) := ‖x‖−1x, there exists an index j = j(x) ∈ {1, . . . , m}
such that ‖u(x) − u j‖ ≤ (2ε)−1C(u j), whence

θ�x + ε‖x‖ + ϕ(x) = (θ + εu(x))�x + ϕ(x)

≤ (θ + εu j )
�x + ϕ(x) + ε‖u j − u(x)‖‖x‖

≤ D(u j ) + (ε‖u j − u(x)‖ − C(u j )
)‖x‖

≤ max
i=1,...,m

D(ui) − 2−1 min
i=1,...,m

C(ui)‖x‖

→ −∞ as ‖x‖ → ∞. �

Proof of Theorem 2.3: As mentioned already, the statements about θ ∈ �(P) and �(·) are
a consequence of Theorem 2.1 (ii) and Proposition 2.2. Note also that for θ ∈ Rd \ �(P)

and arbitrary r > 0,

lim inf
n→∞

∫
Rd

exp(θ�x) Pn(dx) ≥ lim
n→∞

∫
Rd

min
(
exp(θ�x), r

)
Pn(dx)

=
∫
Rd

min
(
exp(θ�x), r

)
P(dx),

and the right hand side tends to infinity as r ↑ ∞. �
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