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Abstract

We consider the distribution of the age of an individual picked uniformly at random at some fixed

time in a linear birth and death process. By exploiting a bijection between the birth and death

tree and a contour process, we derive the c.d.f. for this distribution. In the critical and supercritical

cases we also give rates for the convergence in terms of total variation and other metrics towards the

appropriate exponential distribution.
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1 Introduction

Linear birth and death processes are the most fundamental processes for modelling the evolution of a

population. Being at the intersection of branching processes and general birth and death processes, they

provide us with many nice properties we can exploit and much of their theory has been well-understood

since at least the 1970s; see [Har50, Bai64, AN72, Jag75].

Suppose that (Yt)t≥0 is a linear birth and death process with per-capita birth rate λ > 0 and per-

capita death rate µ ≥ 0. For simplicity, we set the initial population to 1. We denote the distribution of

this process by BDP(λ, µ). To be able to track ages of individuals, we equip the birth and death process

with a phylogeny in form of a rooted binary tree whose edges have labels in {0, 1} indicating whether the

individual “on that edge” has just given birth and been alive before (0) or has itself just been born (1):

Drawing time on the vertical axis and starting with a single branch with label 1 departing from the root

at time zero, we split off a new branch with label 1 from an existing branch (the existing one subsequently

gets label 0) each time a birth occurs and we terminate an existing branch each time a death occurs. The

existing branch is chosen in both cases uniformly at random and independently from everything else. We

may then recover the lifetime of any individual by a sequence of edges starting with a 1-edge followed

forward in time by a number ≥ 0 of 0-edges up to a leaf (death event).

It is straightforward to check that in such a tree each individual has an Exp(µ)-distributed lifetime

during which it gives birth according to a homogeneous Poisson process with rate λ, where all these

lifetimes and processes are independent.
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For some fixed time T > 0, we pick an individual (i.e. a branch) uniformly at random from all living

individuals and denote its age by A = AT . For simplicity, we refer to L(A |YT > 0) as the age distribution

at time T . In the pure birth case, i.e. if µ = 0, it is well-known that the age distribution is a truncated

exponential with parameter λ, a result which follows immediately from Theorem 1 in [NR71]. It is

furthermore well-known that L(A |YT > 0)
w−→ Exp(λ) as T →∞ in the supercritical case (λ > µ). This

follows e.g. from [Jag75], Example (6.10.14).

However, somewhat surprisingly, if µ > 0, an exact formula for the distribution of A at finite T is

nowhere to be found in the literature. In the present note, we provide such a formula for the c.d.f. of A,

both conditionally on the number YT of individuals at time T and unconditionally (the conditioning on

YT > 0 being always tacitly implied). Our main proof idea relies on a bijection between Galton–Watson

trees in continuous time and exploration processes, recently shown in [BPS12]. We also give upper bounds

on the closeness of L(A |YT > 0) and Exp(λ) in the critical and supercritical cases, as well as convergence

rates in various metrics.

We point out some related work where other age distributions have been considered. Firstly, the term

“(actual) age distribution” is sometimes encountered in the classic branching process literature from the

1970s (see e.g. [Jag75], beginning of Section 6.11), referring to the random proportion Y at /Yt, where Y at
is the number of individuals alive at time t with age ≤ a. The relation to the quantity we seek is

P(A ≤ a |YT > 0) = E
(
P(A ≤ a |Y aT , YT , {YT > 0})

)
= E

(
Y aT
YT

∣∣∣∣ YT > 0

)
.

However, it seems that no finite time results are available for Y aT /YT but only limit results, such as [Jag75],

Corollary (6.10.5), which implies the above-mentioned convergence towards Exp(λ) in the supercritical

case.

Secondly, Theorem 2.5 in [Ger08] shows that the speciation times (times of vertices) in the recon-

structed tree given there are n individuals at time T are iid and gives an explicit formula for their

distribution. In such a tree any branches that are not required in order to connect the n individuals at

time T to the root are omitted, so that the reconstructed tree has exactly n leaves in total.

Finally, Theorem 1 in [SKBD13] (more precisely, Theorem 3 in the “supplementary information” of

this paper) gives in the special case m = 1, µ1 = 0, %1 = 1 the density of a linear birth and death tree,

from which one can see that, at time T , the times since the non-zero birth times (including individuals

that have died by time T ) are iid truncated exponentially distributed with parameter λ+ µ.

2 Results

Theorem 2.1 below gives the distribution of the age conditioned on the population size. It contains the

pure birth case (µ = 0) considered in Theorem 1 of [NR71] as a special case.

Theorem 2.1. Let FyT denote the cumulative distribution function of the age of an individual picked

uniformly at random at time T given YT = yT for some yT > 0. Then FyT is given by

FyT (t) =
yT − 1

yT

(
1− e−λt − e−(λ−µ)T e−µt

1− e−(λ−µ)T

)
+

1

yT

(
λ(1− e−µt)− µ(1− e−λt)

λ− µ
1[0,t)(t) + 1{t=T}

)
for t ∈ [0, T ] if λ 6= µ and by

FyT (t) =
yT − 1

yT

(
1− e−λt(T − t)

T

)
+

1

yT

((
1− e−λt(1 + λt)

)
1[0,t)(t) + 1{t=T}

)
for t ∈ [0, T ] if λ = µ > 0.
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Remark 2.2. The proof of Theorem 2.1 yields a stronger result: Conditionally on YT = yT and enu-

merating the individuals alive at time T in a specific way, which depends on the birth and death tree of

the process, their ages are independent, where the first yT − 1 individuals have c.d.f. F∗ given by (3.10)

below and the last individual has a different c.d.f. F ∗ given by (3.13) below. Consequently, if we sample

two different individuals uniformly from all individuals alive at time T , assuming yT ≥ 2, their ages are

dependent draws from the above age distribution FyT .

The enumeration is such that the starting individual, if it is still alive at time T , always comes last. If

we condition on the event that the starting individual has died by time T , the ages are still dependent,

but come from a different mixture distribution yT−1
yT

F∗ + 1
yT
F ∗∗, where the new c.d.f. F ∗∗ can be eas-

ily computed based on the proof of Theorem 2.1. On the other hand, if we condition on the event that

the starting individual survives but sample only from all other individuals alive at time T , we obtain

independent draws from F∗.

A simple computation yields the following unconditional age distribution.

Corollary 2.3. The cumulative distribution function F of the age distribution of (Yt)t≥0 at time T is

given by

F (t) =

(
1− λ− µ

λe(λ−µ)T − λ
log

(
λe(λ−µ)T − µ

λ− µ

))(
1− e−λt − e−(λ−µ)T e−µt

1− e−(λ−µ)T

)
+

λ− µ
λe(λ−µ)T − λ

log

(
λe(λ−µ)T − µ

λ− µ

)(
λ(1− e−µt)− µ(1− e−λt)

λ− µ
1[0,t)(t) + 1{T}(t)

)
for t ∈ [0, T ] if λ 6= µ and by

F (t) =

(
1− log(1 + λT )

λT

)(
1− e−λt(T − t)

T

)
+

log(1 + λT )

λT

(
(1− e−λt(1 + λt))1{t<T} + 1{T}(t)

)
for t ∈ [0, T ] if λ = µ > 0.

The cumulative distribution function of the age distribution is illustrated in Figure 1. Note that

Corollary 2.3 immediately implies that the age distribution converges weakly to Exp(λ) if λ ≥ µ and to

a mixture of Exp(λ) and Exp(µ) if λ < µ.

The next corollary bounds a first kind of discrepancy between the age distribution and Exp(λ) for

λ ≥ µ. By introducing an explicit minimum over all couplings of A∗ ∼ L(A |YT > 0) and Z ∼ Exp(λ)

and/or by integrating (or taking a supremum) over c > 0, this result can be easily turned into an upper

bound for various metrics and pseudometrics.

Corollary 2.4. There exist A∗ ∼ L(A |YT > 0) and Z∗ ∼ Exp(λ) on a common probability space such

that for all c > 0

E
∣∣e−cA∗ − e−cZ∗ ∣∣ ≤ λ

λ+ c

1

e(λ−µ)T − 1
+

λ− µ
λe(λ−µ)T − λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
= O

(
Te−(λ−µ)T

)
if λ > µ and

E
∣∣e−cA∗ − e−cZ∗ ∣∣ ≤ c

(λ+ c)2T
+

log(1 + λT )

λT
= O

(
log(T )/T

)
if λ = µ > 0.

Remark 2.5. By slightly adapting the proof we can obtain a similar bound for the Wasserstein distance.

In particular, we have, as T →∞,

W1

(
L(A |YT > 0),Exp(λ)

)
= E

(
min

A∗∼L(A |YT>0)
Z∗∼Exp(λ)

∣∣A∗ − Z∗∣∣) =

{
O
(
Te−(λ−µ)T

)
if λ > µ

O
(
log(T )/T

)
if λ = µ > 0.
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Figure 1: Cumulative distribution functions of the age distribution (solid lines) and the asymptotic age

distribution (dotted line) for λ = 1.

To round out the picture we also provide a convergence rate in terms of the total variation metric for

λ ≥ µ.

Corollary 2.6. We have, as T →∞,

dTV
(
L(A |YT > 0),Exp(λ)

)
=

{
O
(
Te−(λ−µ)T

)
if λ > µ

O
(
log(T )/T

)
if λ = µ > 0.

3 Proofs

First recall that the probabilities pn(t) that Yt = n are given as follows: For λ 6= µ,

p0(t) = µp̃(t) (3.1)

pn(t) = (1− µp̃(t))(1− λp̃(t))(λp̃(t))n−1, n ∈ N,

where

p̃(t) :=
e(λ−µ)t − 1

λe(λ−µ)t − µ
=

1

λ

1− e−(λ−µ)t

1− µ
λe
−(λ−µ)t ,

by (8.15) and (8.46) in [Bai64]. For λ = µ > 0, these probabilities are given by

p0(t) =
λt

1 + λt
, (3.2)

pn(t) =
(λt)n−1

(1 + λt)n+1
, n ∈ N,

by (8.53) in [Bai64]. From this we easily obtain the following result.

4



Lemma 3.1.

(i) For λ 6= µ, we have

E
(

1

YT

∣∣∣∣ YT > 0

)
=

λ− µ
λe(λ−µ)T − λ

log

(
λe(λ−µ)T − µ

λ− µ

)
≤ λ− µ
λe(λ−µ)T − λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
.

(ii) For λ = µ > 0, we have

E
(

1

YT

∣∣∣∣ YT > 0

)
=

log(1 + λT )

λT
.

Proof. (i) For λ 6= µ, we obtain

E
(

1

YT

∣∣∣∣ YT > 0

)
=

∞∑
n=1

1

n
· pn(T )

1− p0(T )

=

∞∑
n=1

1

n

λ− µ
λe(λ−µ)T − µ

(
λe(λ−µ)T − λ
λe(λ−µ)T − µ

)n−1
=

λ− µ
λe(λ−µ)T − λ

log

(
λe(λ−µ)T − µ

λ− µ

)
≤ λ− µ
λe(λ−µ)T − λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
.

(ii) Analogously, we obtain for λ = µ > 0

E
(

1

YT

∣∣∣∣ YT > 0

)
=

∞∑
n=1

1

n
· pn(T )

1− p0(T )
=

∞∑
n=1

1

n

(λT )n−1

(1 + λT )n
=

log(1 + λT )

λT
.

3.1 Proof of Theorem 2.1 and Corollary 2.3

The expression for the c.d.f. in Corollary 2.3 follows directly from conditioning on YT and applying

Theorem 2.1 and Lemma 3.1.

Our proof of Theorem 2.1 relies on a recent result in [BPS12] that shows that the distribution of

the random binary tree generated by a birth and death process (see introduction) can be obtained by

inscribing a binary tree under the following contour process (also known as exploration process).

Let (Uk)k∈N0 and (Vk)k∈N0 be two mutually independent sequences of independent, identically ex-

ponentially distributed random variables with parameters µ and λ, respectively. Starting at (0, 0), al-

ternatingly add straight lines of slope +1 and −1 whose random heights are governed by the U - and

V -variables, respectively. More precisely, for any k ∈ N0, given that after 2k steps of this procedure

we are at position (x, y), we add a straight line from (x, y) to
(
x+ min(Uk, T − y), y + min(Uk, T − y)

)
;

given that after 2k+ 1 steps of this procedure we are at position (x, y), we add a straight line from (x, y)

to
(
x+ min(Vk, y), y−min(Vk, y)

)
. We stop the procedure when reaching a point (τ, 0) with τ > 0. The

random function H = (Hx)0≤x≤τ induced by this graph is what we call contour process deflected at T .

We denote its distribution by Pλ,µ,T .

We inscribe a left-aligned tree under (the graph of) the contour process as follows. We denote by

0 = W1 < . . . < W2BT+1 = τ the points at which it has its local extrema, where BT is the number of

individuals born up to time 0 (including the one that existed at time 0). Note that (W2, HW2
) is the

leftmost local maximum of H. We draw a (vertical) line from (W2, 0) to (W2, HW2
). The second leftmost

local maximum is (W4, HW4) and the leftmost non-zero local minimum is (W3, HW3) if they exist. In
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Figure 2: The contour process deflected at T and the inscribed left-aligned tree representing a linear

birth and death process up to time T .

this case we add a (vertical) line from (W4, HW3) to (W4, HW4) and a (horizontal) line from (W4, HW3)

connecting the vertical line horizontally to the rest of the tree. We continue this procedure until we have

explored all non-zero local extrema; see Figure 2.

Theorem 3.1 in [BPS12] implies that the left-aligned tree obtained by this procedure has the same

distribution Qλ,µ,T as the (left-aligned) tree obtained from a BDP(λ, µ)-process (always assumed to be

started with a single individual) killed at time T . This is essentially because each Exp(µ)-distributed

up-step in the contour process corresponds to the lifetime of an individual and each Exp(λ)-distributed

down-step corresponds to the time at the death of an individual that has passed since the last birth along

its ancestry line (not including births of individuals belonging to this line). Note that horizontal edge

lengths in the tree have no meaning but are simply adjusted to comply with the lines of the contour

process.

The advantage of drawing the tree in a left-aligned fashion is that we may now always label the left

branch by 0 and the right branch by 1 in order to obtain the birth and death times of each individual

directly as lower and upper end point of vertical lines (which may be interrupted by further vertices).

In particular, we may read off the ages of the individuals alive at time T as the total lengths of vertical

lines that reach T ; see Figure 2.

The key observation is now that we may apply the inscription procedure described above also from

right to left, i.e. we inscribe a right-aligned tree under the contour process by going through the locations

W1,W2, . . . ,W2BT+1 of the local extrema in the reverse order, replacing each occurrence of the word

“leftmost” by “rightmost” in the above description; see Figure 3. By interpreting vertical lines as before,

we then obtain another tree that still has the correct distribution Qλ,µ,T in terms of birth and death times

and phylogeny, but is now simply drawn in a right-aligned way. This is because applying the inscription

procedure from right to left rather than left to right maintains the birth and death times exactly and

maps the phylogeny bijectively onto another (typically different) phylogeny; since by construction the

phylogeny of a linear birth and death process is uniformly distributed, it remains so after this mapping.

In the right-aligned tree, the ages of the individuals alive at time T correspond now to the down-steps

from the local maxima at height T ; see Figure 3.

By the above construction of the contour process, the process (HWk
, (−1)k)k∈N is a Markov chain on

[0, T ] × {−1, 1} with initial value (0,−1) at time 1. The second component simply keeps track whether

the contour process is at a local minimum (if it is −1) or a local maximum (if it is 1).

We define the sequence (ξk)k∈N of hitting times in (T, 1) recursively by

ξ1 = inf{k ∈ N : (HWk
, (−1)k) = (T, 1)} and ξl+1 = inf{k > ξl : (HWk

, (−1)k) = (T, 1)}
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Figure 3: The deflected contour process, the inscribed right-aligned tree and the left-aligned trees corre-

sponding to the mirrored excursions E(1), E(2) and E(3).

for all l ∈ N, where inf ∅ = ∞. Note that max{l : ξl < ∞} = YT . Moreover, we define the “vertically”

mirrored (i.e. mirrored at a horizontal axis) excursions

E(l) = (E
(l)
k )0≤k≤ξl+1−ξl = (T −HWk

)ξl≤k≤ξl+1

for l ∈ N, where we set ∞−∞ = 0.

Since P
(
(HWξl

, (−1)ξl) = (T, 1)
∣∣ ξl < ∞) = 1, the strong Markov property and the fact that the

second component of the process is deterministic imply that (HWk
)0≤k≤ξl and (HWk

)ξl≤k are independent

given ξl <∞ and that (HWk
)ξl≤k has the same distribution given ξl <∞ for any l ∈ N. As a consequence,

we have for any l ∈ N that E(1), E(2), . . . , E(l−1) are independent of (E(l), (ξr)r≥l+1) given ξl < ∞ and

hence that E(1), E(2), . . . , E(l−1) are independent of E(l) given ξl < ∞ and given any sub-σ-algebra of

σ(ξr; r ≥ l+1). This implies that E(1), E(2), . . . , E(l−1), E(l) are independent given ξl <∞ and given any

sub-σ-algebra of σ(ξr; r ≥ l+ 1) for any l ∈ N. Note that for any l ∈ N, the first l−1 mirrored excursions

E(1), E(2), . . . , E(l−1) all have the same distribution under this conditioning because E(1), E(2), . . . , E(l−1)

all have the same distribution given ξl <∞ and E(1), E(2), . . . , E(l−1) are independent of (ξr)r≥l+1 given

ξl <∞.

Since {YT = yT } = {ξyT <∞, ξyT+1 =∞} we obtain that, given YT = yT , the processes E(1), E(2), . . . ,

E(yT−1), E(yT ) are independent and E(1), E(2), . . . , E(yT−1) are identically distributed. By the strong

Markov property used above, it is seen that neither the distribution of E(1) given YT = yT ≥ 2 nor the

distribution of E(yT ) given YT = yT ≥ 1 depends on the concrete value yT .

On {YT = yT }, the ages of the individuals alive at time T are just E
(1)
1 , . . . , E

(yT−1)
1 and E

(yT )
1

(cf. Figure 3). In order to determine their conditional distributions given YT = yT , we show that

the mirrored excursions E(1), E(2), . . . , E(yT ) correspond to independent copies of a contour processes

(H̃x)x≥0 ∼ Pµ,λ,T corresponding to the left-aligned tree of a BDP(µ, λ)-process (note the order of the

parameters!) killed at T now. Let the positions (W̃k)k∈N of the local extrema of (H̃x)x≥0 be defined

analogously to (Wk)k∈N. Both (H̃W̃k+1
)k∈N0

and (E
(l)
k )k∈N0

for arbitrary l ∈ {1, . . . , yT } start in 0 and

alternate between independently adding Exp(λ) and subtracting Exp(µ) random variables up to the first

non-zero time where 0 or T is hit. So until this happens, they have the same distribution. Note that

the contour process (H̃x)x≥0 and thus also E(1), E(2), . . . , E(yT ) correspond to the left-aligned tree of a

BDP(µ, λ)-process killed at T by Theorem 3.1 in [BPS12].

We therefore obtain for yT ≥ 2 that

L(E
(1)
1 |YT = yT ) = L

(
E

(1)
1

∣∣ E(1) returns to 0 before reaching T
)

(3.3)

is the distribution of the lifetime of the starting individual in a BDP(µ, λ)-process conditioned on extinc-

tion of the process by time T . By the same argument, for yT ≥ 1 we see that

L(E
(yT )
1 |YT = yT ) = L

(
E

(yT )
1

∣∣ E(yT ) reaches T before returning to 0
)

(3.4)
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is the distribution of the lifetime (up to time T ) of the starting individual in a BDP(µ, λ)-process condi-

tioned on survival of the process until time T .

Let (Zt)t≥0 ∼ BDP(µ, λ) be equipped with a phylogeny as described in the introduction. Denote by

L1 the lifetime of the starting individual and let F∗ and F ∗ be the c.d.f.s of L1 given ZT = 0 and of

min(L1, T ) given ZT > 0 respectively. We then obtain from the above that the age distribution given

YT = yT > 0 has c.d.f.

FyT (t) =
yT − 1

yT
F∗(t) +

1

yT
F ∗(t) (3.5)

for all t ≥ 0.

By Bayes’ Theorem, F∗ has density

f∗(t) ∝ λe−λtP(ZT = 0 |L1 = t), (3.6)

for t ∈ [0, T ). Given L1 = t, the birth times of the offspring of the starting individual form a Poisson

process with rate µ. By conditioning on the number of offspring and their birth times and plugging in

their extinction probabilities as given by Equation (3.1), we obtain

P(ZT = 0 |L1 = t) =

∞∑
k=0

(µt)k

k!
e−µt

1

tk

∫ t

0

. . .

∫ t

0

λ

µ

1− e(λ−µ)(T−t1)

1− λ
µe

(λ−µ)(T−t1)
. . .

λ

µ

1− e(λ−µ)(T−tk)

1− λ
µe

(λ−µ)(T−tk)
dt1 . . . dtk

=

∞∑
k=0

1

k!
e−µt

(∫ t

0

λ
e−(λ−µ)(T−u) − 1

e−(λ−µ)(T−u) − λ
µ

du

)k
=

∞∑
k=0

1

k!
e−µt

(
log(λe(λ−µ)(T−t) − µ) + λt− log(λe(λ−µ)T − µ)

)k
=
λe(λ−µ)(T−t) − µ
λe(λ−µ)T − µ

e(λ−µ)t (3.7)

for t ∈ [0, T ) if λ 6= µ. If λ = µ > 0, the same argument using the extinction probabilities from

Equation (3.2) yields

P(ZT = 0 |L1 = t) =

∞∑
k=0

(λt)k

k!
e−λt

1

tk

∫ t

0

. . .

∫ t

0

λ(T − t1)

1 + λ(T − t1)
. . .

λ(T − tk)

1 + λ(T − tk)
dt1 . . . dtk

=

∞∑
k=0

1

k!
e−λt

(∫ t

0

λ
λ(T − u)

1 + λ(T − u)
du

)k
=

∞∑
k=0

1

k!
e−λt(log(1 + λ(T − t))− log(1 + λT ) + λt)k

=
1 + λ(T − t)

1 + λT
. (3.8)

for t ∈ [0, T ). We may then compute the normalizing constant and obtain for t ∈ [0, T ]

f∗(t) =


λe(λ−µ)T e−λt − µe−µt

e(λ−µ)T − 1
=
λe−λt − µe−(λ−µ)T e−µt

1− e−(λ−µ)T
if λ 6= µ,

e−λt(1 + λ(T − t))
T

if λ = µ > 0.

(3.9)

By integration we obtain that the c.d.f. F∗ for t ∈ [0, T ] is given by

F∗(t) =


1− e−λt − e−(λ−µ)T e−µt

1− e−(λ−µ)T
if λ 6= µ,

1− e−λt(T − t)
T

if λ = µ > 0.

(3.10)
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It remains to derive F ∗, which we do in a similar way. A slight notational complication arises from

the fact that F ∗ has a discontinuity at T . We note that min(L1, T ) has a density f̃ with respect to the

measure Leb[0,T ) + δT given by

f̃(t) = λe−λt1[0,t)(t) + e−λT1{T}(t).

Thus by Bayes’ Theorem, F ∗ has density f∗ with respect to Leb[0,T ) + δT satisfying

f∗(t) ∝ f̃(t)P(ZT > 0 |L1 = t) (3.11)

for t ∈ [0, T ]. By (3.7) and (3.8) we have

P(ZT > 0 |L1 = t) =


1− λe(λ−µ)(T−t) − µ

λe(λ−µ)T − µ
e(λ−µ)t =

µe(λ−µ)t − µ
λe(λ−µ)T − µ

if λ 6= µ,

1− 1 + λ(T − t)
1 + λT

=
λt

1 + λT
if λ = µ > 0,

for t ∈ [0, T ). Therefore for any t ∈ [0, T ]

f∗(t) ∝


λe−λt

µe(λ−µ)t − µ
λe(λ−µ)T − µ

1[0,t)(t) + e−λT1{T}(t) if λ 6= µ,

λe−λt
λt

1 + λT
1[0,t)(t) + e−λT1{T}(t) if λ = µ > 0.

Computing the normalizing constant, we obtain for t ∈ [0, T ]

f∗(t) =


λµ

e−µt − e−λt

λ− µ
1[0,t)(t) +

λe−µT − µe−λT

λ− µ
1{T}(t) if λ 6= µ,

λ2te−λt1[0,t)(t) + (1 + λT )e−λT1{T}(t) if λ = µ > 0.

(3.12)

By integration we obtain that the c.d.f. F ∗ for t ∈ [0, T ] is given by

F ∗(t) =


λ(1− e−µt)− µ(1− e−λt)

λ− µ
1[0,t)(t) + 1{T}(t) if λ 6= µ,(

1− e−λt(1 + λt)
)
1[0,t)(t) + 1{T}(t) if λ = µ > 0.

(3.13)

Plugging (3.10) and (3.13) into Equation (3.5) yields the statement of Theorem 2.1.

3.2 Proof of Corollary 2.4

It is enough to construct A∗ and Z∗ on {YT > 0} that have the right distributions given YT > 0 and

are such that E
(
|e−cA∗ − e−cZ∗ |

∣∣ YT > 0
)

satisfies the required bound. We construct them explicitly as

a quantile coupling using notation from the proof of Theorem 2.1. Let JT be a random variable that is

uniformly distributed on {1, . . . , yT } given YT = yT > 0, independent from everything else, and let U

be uniformly distributed on [0, 1] and also independent from everything else. Defining the generalized

inverse of a c.d.f. F by F−1(u) = inf{t ∈ IR; F (t) ≥ u}, set

A∗ := 1{JT<YT }F
−1
∗ (U) + 1{JT=YT }(F

∗)−1(U),

Z∗ := F−1∞ (U),

where F∞ denotes the c.d.f. of Exp(λ). By Equation (3.5) and the independence of U from (YT , JT ) we

obtain L(A∗ |YT > 0) = L(A |YT > 0) and L(Z∗ |YT > 0) = Exp(λ) as required.
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Since λ ≥ µ, we may verify directly from (3.10), noting that F∗(t) = 1 for all t ≥ T , that

F∗(t) > 1− e−λt = F∞(t) for all t > 0.

Therefore, since F∞ is continuous and strictly increasing on IR+,

F−1∗ (U) ≤ F−1∞ (U).

We may thus compute

E
(
|e−cA∗ − e−cZ∗ |

∣∣ YT > 0
)

= E
(
YT − 1

YT
E
(
|e−cA∗ − e−cZ∗ |

∣∣ YT , JT < YT
)

+
1

YT
E
(
|e−cA∗ − e−cZ∗ |

∣∣ YT , JT = YT
) ∣∣∣∣ YT > 0

)
≤ E

(
e−cF

−1
∗ (U) − e−cF

−1
∞ (U)

)
+ E

(
1

YT

∣∣∣∣ YT > 0

)
. (3.14)

Note that we could employ a more sophisticated argument, taking care of the sign of e−c·(F
∗)−1(U) −

e−cF
−1
∞ (U) for the second inner conditional expectation in line 2 of (3.14). But since F ∗(t) 6→ F∞(t)

as T → ∞ for any t > 0, we would not gain anything in terms of the convergence rates; in particular,

the factors T and log(T ) in the orders of the upper bound if µ < λ and µ = λ, respectively, cannot be

removed.

It is now a matter of computing Laplace transforms. Since F−1∞ (U) ∼ Exp(λ), we have

E
(
e−cF

−1
∞ (U)

)
=

λ

λ+ c
. (3.15)

For F−1∗ (U) we use the density from (3.9) and obtain for λ > µ

E
(
e−cF

−1
∗ (U)

)
=

1

1− e−(λ−µ)T

∫ T

0

(λe−(λ+c)t − µe−(λ−µ)T e−(µ+c)t) dt

=
1

1− e−(λ−µ)T

(
λ

λ+ c
(1− e−(λ+c)T )− µ

µ+ c
e−(λ−µ)T (1− e−(µ+c)T )

)
≤ λ

λ+ c

e(λ−µ)T

e(λ−µ)T − 1
, (3.16)

and for λ = µ > 0

E
(
e−cF

−1
∗ (U)

)
=

1

T

∫ T

0

e−(λ+c)t(1 + λ(T − t)) dt =
λ

λ+ c
+
c(1− e−(λ+c)T )

(λ+ c)2T
≤ λ

λ+ c
+

c

(λ+ c)2T
.

(3.17)

Combining (3.15)–(3.17) to bound the first summand on the right hand side of (3.14) and employing

Lemma 3.1 for the second summand, we obtain the required bounds.

3.3 Proof of Corollary 2.6

Let f denote the density of L(A |YT > 0) with respect to νT = Leb[0,∞)\{T}+ δT . Equation (3.5) implies

that

f(t) = (1− cT )f∗(t)1[0,T )(t) + cT f
∗(t),

where f∗ and f∗ are given in (3.9) and (3.12), respectively, and

cT = E
(

1

YT

∣∣∣∣ YT > 0

)
=

{
O
(
Te−(λ−µ)T

)
if λ > µ,

O
(
log(T )/T

)
if λ = µ.

(3.18)
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by Lemma 3.1.

Noting that f∗(t) = f∗(t) = 0 for t > T , we have

dTV
(
L(A |YT > 0),Exp(λ)

)
=

1

2

∫ ∞
0

∣∣f(t)− λe−λt1[0,∞)\{T}
∣∣ νT (dt)

≤ 1

2

(
(1− cT )

∫ ∞
0

|f∗(t)− λe−λt| dt+ cT

∫ ∞
0

|f∗(t)− λe−λt| dt+ cT f
∗(T )

)
≤ 1

2

(∫ T

0

|f∗(t)− λe−λt| dt+ cT

∫ T

0

|f∗(t)− λe−λt| dt+O
(
Te−λT

))
.

(3.19)

If λ > µ, we obtain for the first integral on the right-hand side∫ T

0

|f∗(t)− λe−λt| dt =

∫ T

0

∣∣∣∣λe−(λ−µ)T e−λt − µe−(λ−µ)T e−µt1− e−(λ−µ)T

∣∣∣∣ dt
=

e−(λ−µ)T

1− e−(λ−µ)T

∫ T

0

|λe−λt − µe−µt| dt = O
(
e−(λ−µ)T

)
. (3.20)

and for the second integral on the right-hand side∫ T

0

|f∗(t)− λe−λt| dt =
λ

λ− µ

∫ T

0

|λe−λt − µe−µt| dt = O(1). (3.21)

In conclusion, plugging (3.20), (3.21) and (3.18) into Inequality (3.19), we have that

dTV
(
L(A |YT > 0),Exp(λ)

)
= O

(
Te−(λ−µ)T

)
.

If λ = µ > 0, we obtain for the first integral on the right-hand side of Inequality (3.19)∫ T

0

|f∗(t)− λe−λt| dt =
1

T

∫ T

0

e−λt|λt− 1| dt = O(1/T ). (3.22)

and for the second integral∫ T

0

|f∗(t)− λe−λt| dt = λ

∫ T

0

e−λt|λt− 1| dt = O(1). (3.23)

Thus, plugging (3.22), (3.23) and (3.18) into Inequality (3.19) yields

dTV
(
L(A |YT > 0),Exp(λ)

)
= O

(
log(T )/T

)
.
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[SKBD13] Tanja Stadler, Denise Kühnert, Sebastian Bonhoeffer, and Alexei J Drummond. Birth–death

skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV).

Proceedings of the National Academy of Sciences, 110(1):228–233, 2013.

12


	Introduction
	Results
	Proofs
	Proof of Theorem 2.1 and Corollary 2.3
	Proof of Corollary 2.4
	Proof of Corollary 2.6


